Skip to main content

Site-Specific Antibody-Drug Conjugates

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Site-specific antibody drug conjugates are the next stage in the evolution of antibody drug conjugates. The enhanced in vivo stability, potent anti-tumor efficacy and favorable toxicology profiles make site-specific ADCs an attractive option for treating cancer patients. The well-defined structure provides a base for further optimization through structure-property-relationship. We provide a comprehensive review of site-specific ADC technologies and offer insights into the future direction of ADCs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7(1):9–14

    Article  CAS  PubMed  Google Scholar 

  2. Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12(4):278–287

    Article  CAS  PubMed  Google Scholar 

  3. Sanz L, Alvarez-Vallina L (2005) Antibody-based antiangiogenic cancer therapy. Expert Opin Ther Targets 9(6):1235–1245

    Article  CAS  PubMed  Google Scholar 

  4. Roviello G et al (2017) The role of bevacizumab in solid tumours: a literature based meta-analysis of randomised trials. Eur J Cancer 75:245–258

    Article  CAS  PubMed  Google Scholar 

  5. Azoury SC, Straughan DM, Shukla V (2015) Immune checkpoint inhibitors for cancer therapy: clinical efficacy and safety. Curr Cancer Drug Targets 15(6):452–462

    Article  CAS  PubMed  Google Scholar 

  6. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330

    Article  CAS  PubMed  Google Scholar 

  7. Ho RJ, Chien J (2014) Trends in translational medicine and drug targeting and delivery: new insights on an old concept-targeted drug delivery with antibody-drug conjugates for cancers. J Pharm Sci 103(1):71–77

    Article  CAS  PubMed  Google Scholar 

  8. Polakis P (2016) Antibody drug conjugates for Cancer therapy. Pharmacol Rev 68(1):3–19

    Article  CAS  PubMed  Google Scholar 

  9. Beck A et al (2017) Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16(5):315–337

    Article  CAS  PubMed  Google Scholar 

  10. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5(2):147–159

    Article  CAS  PubMed  Google Scholar 

  11. Peters C, Brown S (2015) Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep 35(4):e00225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Varki NM, Reisfeld RA, Walker LE (1984) Antigens associated with a human lung adenocarcinoma defined by monoclonal antibodies. Cancer Res 44(2):681–687

    PubMed  CAS  Google Scholar 

  13. Trail PA et al (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261(5118):212–215

    Article  CAS  PubMed  Google Scholar 

  14. Herbertson RA et al (2009) Phase I biodistribution and pharmacokinetic study of Lewis Y-targeting immunoconjugate CMD-193 in patients with advanced epithelial cancers. Clin Cancer Res 15(21):6709–6715

    Article  CAS  PubMed  Google Scholar 

  15. Jackson D, Stover D (2015) Using the lessons learned from the clinic to improve the preclinical development of antibody drug conjugates. Pharm Res 32(11):3458–3469

    Article  CAS  PubMed  Google Scholar 

  16. Donaghy H (2016) Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 8(4):659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lyon RP et al (2015) Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 33(7):733–735

    Article  CAS  PubMed  Google Scholar 

  18. Yurkovetskiy AV et al (2015) A polymer-based antibody-Vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res 75(16):3365–3372

    Article  CAS  PubMed  Google Scholar 

  19. Ogitani Y et al (2016) DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 22(20):5097–5108

    Article  CAS  PubMed  Google Scholar 

  20. Junutula JR et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26(8):925–932

    Article  CAS  PubMed  Google Scholar 

  21. Hamblett KJ et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10(20):7063–7070

    Article  CAS  PubMed  Google Scholar 

  22. Tian F et al (2014) A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci U S A 111(5):1766–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng H et al (2012) Thiol reactive probes and chemosensors. Sensors (Basel) 12(11):15907–15946

    Article  CAS  Google Scholar 

  24. McDonagh CF et al (2006) Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 19(7):299–307

    Article  CAS  PubMed  Google Scholar 

  25. Junutula JR et al (2008) Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J Immunol Methods 332(1–2):41–52

    Article  CAS  PubMed  Google Scholar 

  26. Woo HJ et al (1991) Carbohydrate-binding protein 35 (mac-2), a laminin-binding lectin, forms functional dimers using cysteine 186. J Biol Chem 266(28):18419–18422

    PubMed  CAS  Google Scholar 

  27. Wootton SK, Yoo D (2003) Homo-oligomerization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein and the role of disulfide linkages. J Virol 77(8):4546–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alley SC et al (2008) Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 19(3):759–765

    Article  CAS  PubMed  Google Scholar 

  29. Baldwin AD, Kiick KL (2011) Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug Chem 22(10):1946–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen BQ et al (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30(2):184–189

    Article  CAS  PubMed  Google Scholar 

  31. Lyon RP et al (2014) Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat Biotechnol 32(10):1059–1062

    Article  CAS  PubMed  Google Scholar 

  32. Lu J, Holmgren A (2009) Selenoproteins. J Biol Chem 284(2):723–727

    Article  CAS  PubMed  Google Scholar 

  33. Hofer T et al (2009) Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry 48(50):12047–12057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hofer T et al (2008) An engineered selenocysteine defines a unique class of antibody derivatives. Proc Natl Acad Sci U S A 105(34):12451–12456

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li X, Yang J, Rader C (2014) Antibody conjugation via one and two C-terminal selenocysteines. Methods 65(1):133–138

    Article  CAS  PubMed  Google Scholar 

  36. Yuan J et al (2006) RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc Natl Acad Sci U S A 103(50):18923–18927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hohsaka T, Sisido M (2002) Incorporation of non-natural amino acids into proteins. Curr Opin Chem Biol 6(6):809–815

    Article  CAS  PubMed  Google Scholar 

  38. Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408

    Article  CAS  PubMed  Google Scholar 

  39. Hallam TJ, Smider VV (2014) Unnatural amino acids in novel antibody conjugates. Future Med Chem 6(11):1309–1324

    Article  CAS  PubMed  Google Scholar 

  40. Cho H et al (2011) Optimized clinical performance of growth hormone with an expanded genetic code. Proc Natl Acad Sci U S A 108(22):9060–9065

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kern JC et al (2016) Novel phosphate modified Cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug Chem 27(9):2081–2088

    Article  CAS  PubMed  Google Scholar 

  42. Zimmerman ES et al (2014) Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 25(2):351–361

    Article  CAS  PubMed  Google Scholar 

  43. Axup JY et al (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci U S A 109(40):16101–16106

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kern JC et al (2016) Discovery of pyrophosphate Diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody-drug conjugates. J Am Chem Soc 138(4):1430–1445

    Article  CAS  PubMed  Google Scholar 

  45. VanBrunt MP et al (2015) Genetically encoded Azide containing amino acid in mammalian cells enables site-specific antibody-drug conjugates using click cycloaddition chemistry. Bioconjug Chem 26(11):2249–2260

    Article  CAS  PubMed  Google Scholar 

  46. Jackson D et al (2014) In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates. PLoS One 9(1):e83865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ozawa K et al (2012) High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Biochem Biophys Res Commun 418(4):652–656

    Article  CAS  PubMed  Google Scholar 

  48. Hong SH, Kwon YC, Jewett MC (2014) Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Front Chem 2:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomann M et al (2015) In vitro glycoengineering of IgG1 and its effect on fc receptor binding and ADCC activity. PLoS One 10(8):e0134949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu SD et al (2015) Afucosylated antibodies increase activation of FcgammaRIIIa-dependent signaling components to intensify processes promoting ADCC. Cancer Immunol Res 3(2):173–183

    Article  CAS  PubMed  Google Scholar 

  51. Uppal H et al (2015) Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res 21(1):123–133

    Article  CAS  PubMed  Google Scholar 

  52. Li F et al (2017) Tumor associated macrophages can contribute to antitumor activity through FcgammaRmediated processing of antibody-drug conjugates. Mol Cancer Ther

    Google Scholar 

  53. Zheng K, Bantog C, Bayer R (2011) The impact of glycosylation on monoclonal antibody conformation and stability. MAbs 3(6):568–576

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ramakrishnan B, Qasba PK (2002) Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. J Biol Chem 277(23):20833–20839

    Article  CAS  PubMed  Google Scholar 

  55. Boeggeman E et al (2009) Site specific conjugation of fluoroprobes to the remodeled fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem 20(6):1228–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sochaj AM, Swiderska KW, Otlewski J (2015) Current methods for the synthesis of homogeneous antibody-drug conjugates. Biotechnol Adv 33(6 Pt 1):775–784

    Article  CAS  PubMed  Google Scholar 

  57. Zhou Q et al (2014) Site-specific antibody-drug conjugation through glycoengineering. Bioconjug Chem 25(3):510–520

    Article  CAS  PubMed  Google Scholar 

  58. Jeger S et al (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed Engl 49(51):9995–9997

    Article  CAS  PubMed  Google Scholar 

  59. Strop P et al (2013) Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol 20(2):161–167

    Article  CAS  PubMed  Google Scholar 

  60. Popp MW, Antos JM, Ploegh HL (2009) Site-specific protein labeling via sortase-mediated transpeptidation. Curr Protoc Protein Sci. Chapter 15: p. Unit 15.3

    Google Scholar 

  61. Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8(3):226–234

    Article  CAS  PubMed  Google Scholar 

  62. Swee LK et al (2013) Sortase-mediated modification of alphaDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc Natl Acad Sci U S A 110(4):1428–1433

    Article  PubMed  PubMed Central  Google Scholar 

  63. Beerli RR et al (2015) Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One 10(7):e0131177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rabuka D et al (2012) Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nat Protoc 7(6):1052–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Agarwal P et al (2013) Hydrazino-Pictet-Spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem 24(6):846–851

    Article  CAS  PubMed  Google Scholar 

  66. Drake PM et al (2014) Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem 25(7):1331–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schumacher D et al (2015) Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase. Angew Chem Int Ed Engl 54(46):13787–13791

    Article  CAS  PubMed  Google Scholar 

  68. Prota AE et al (2013) Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J Cell Biol 200(3):259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Behrens CR et al (2015) Antibody-drug conjugates (ADCs) derived from Interchain cysteine cross-linking demonstrate improved homogeneity and other pharmacological properties over conventional heterogeneous ADCs. Mol Pharm 12(11):3986–3998

    Article  CAS  PubMed  Google Scholar 

  70. Bryden F et al (2014) Regioselective and stoichiometrically controlled conjugation of photodynamic sensitizers to a HER2 targeting antibody fragment. Bioconjug Chem 25(3):611–617

    Article  CAS  PubMed  Google Scholar 

  71. Maruani A et al (2015) A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun 6:6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bryant P et al (2015) In vitro and in vivo evaluation of cysteine Rebridged Trastuzumab-MMAE antibody drug conjugates with defined drug-to-antibody ratios. Mol Pharm 12(6):1872–1879

    Article  CAS  PubMed  Google Scholar 

  73. Hui JZ, Tsourkas A (2014) Optimization of photoactive protein Z for fast and efficient site-specific conjugation of native IgG. Bioconjug Chem 25(9):1709–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sakamoto T et al (2010) Enzyme-mediated site-specific antibody-protein modification using a ZZ domain as a linker. Bioconjug Chem 21(12):2227–2233

    Article  CAS  PubMed  Google Scholar 

  75. Polu KR, Lowman HB (2014) Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin Biol Ther 14(8):1049–1053

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tian, F., Jackson, D., Bai, Y. (2018). Site-Specific Antibody-Drug Conjugates. In: Damelin, M. (eds) Innovations for Next-Generation Antibody-Drug Conjugates. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-78154-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78154-9_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-78153-2

  • Online ISBN: 978-3-319-78154-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics