On Low-Pass Phase Noise Mitigation in OFDM System for mmWave Communications

  • Xiaoming Chen
  • Wei Fan
  • Anxue Zhang
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 237)


A phase noise (PN) mitigation scheme was proposed for orthogonal frequency division multiplexing (OFDM) in a previous work. The proposed scheme does not require detailed knowledge of PN statistics and can effectively compensate the PN with sufficient number of unknowns. In this paper, we analyze the performance of PN estimation/mitigation using the proposed scheme. It is shown that increasing the number of unknowns reduces the modeling error, yet increases the additive noise. Hence, increasing the number of unknowns increases the computational complexity and can even degrade the estimation performance. It is also shown that the PN spectral shape of the phase-locked-loop (PLL) based oscillator also affects the PN mitigation and that a larger PN may not necessarily degrade the performance of the OFDM system with PN mitigation. Simulations with realistic millimeter-wave (mmWave) PN and channel models are conducted to verify these findings.


Phase noise mitigation mmWave communications OFDM systems 


  1. 1.
    Bingham, J.A.C.: Multicarrier modulation for data transmission, an idea whose time has come. IEEE Comm. Mag. 28, 5–14 (1990)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Fan, W., Carton, I., Nielsen, J.Ø., Olesen, K., Pedersen, G.F.: Measured wideband characteristics of indoor channels at centimetric and millimetric bands. EURASIP J. Wirel. Commun. Netw. 2016, 58 (2016)CrossRefGoogle Scholar
  4. 4.
    Guan, K., Li, G., Kuerner, T., Molisch, A.F., Peng, B., He, R., Hui, B., Kim, J.H., Zhong, Z.: On millimeter wave and THz mobile radio channel for smart rail mobility. IEEE Trans. Veh. Technol. 66, 5658–5674 (2017)CrossRefGoogle Scholar
  5. 5.
    Ai, B., Guan, K., He, R., Li, J., Li, G., He, D., Zhong, Z.: On indoor millimeter wave massive MIMO channels: measurement and simulation. IEEE J. Sel. Areas Commun. 35, 1678–1690 (2017)CrossRefGoogle Scholar
  6. 6.
    Armada, A.G.: Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM). IEEE Trans. Broadcast. 47, 153–159 (2001)CrossRefGoogle Scholar
  7. 7.
    Wu, S., Bar-Ness, Y.: OFDM system in the presence of phase noise: consequences and solutions. IEEE Trans. Commun. 52, 1988–1996 (2004)CrossRefGoogle Scholar
  8. 8.
    Zhang, J., Rohling, H., Zhang, P.: Analysis of ICI cancellation scheme in OFDM systems with phase noise. IEEE Trans. Broadcast. 50, 97–106 (2004)CrossRefGoogle Scholar
  9. 9.
    Petrovic, D., Rave, W., Fettweis, G.: Effects of phase noise on OFDM systems with and without PLL: characterization and compensation. IEEE Trans. Commun. 55, 1607–1616 (2007)CrossRefGoogle Scholar
  10. 10.
    Tchamov, N.N., Rinne, J., Hazmi, A., Valkama, M., Syrjala, V., Renfors, M.: Enchanced algorithm for digital mitigation of ICI due to phase noise in OFDM receivers. IEEE Wirel. Commun. Lett. 2, 6–9 (2013)CrossRefGoogle Scholar
  11. 11.
    Rabiei, P., Namgoong, W., Al-Dhahir, N.: A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems. IEEE Trans. Sig. Process. 58, 5945–5950 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mathecken, P., Riihonen, T., Werner, S., Wichman, R.: Phase noise estimation in OFDM: utilizing its associated spectral geometry. IEEE Trans. Sig. Process. 64, 1999–2012 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, X.: OFDM based multi-node transmission in the presence of phase noises for small cell backhaul. IEEE Commun. Lett. 21, 1207–1210 (2017)CrossRefGoogle Scholar
  14. 14.
    Zou, Q., Tarighat, A., Sayed, A.H.: Joint compensation of IQ imbalance and phase noies in OFDM wireless systems. IEEE Trans. Commun. 57, 404–414 (2009)CrossRefGoogle Scholar
  15. 15.
    Lin, D.D., Pacheco, R., Lim, T.J., Hatzinakos, D.: Joint estimation of channel response, frequency offset, phase noise in OFDM. IEEE Trans. Sig. Process. 54, 3542–3554 (2006)CrossRefzbMATHGoogle Scholar
  16. 16.
    Salim, O.H., Nasir, A.A., Mehrpouyan, H., Xiang, W., Durrani, S., Kennedy, R.A.: Channel, phase noise, and frequency offset in OFDM systems: joint estimation, data detection, and hybrid cramer-rao lower bound. IEEE Trans. Commun. 62, 3311–3324 (2014)CrossRefGoogle Scholar
  17. 17.
    Chen, X., Wolfgang, A.: Phase noise mitigation in OFDM-based backhaul in the presence of channel estimation and synchronization errors. In: IEEE 83rd Vehicular Technology Conference, pp. 1–5. IEEE Press, New York (2016)Google Scholar
  18. 18.
    Demir, A., Mehrotra, A., Roychowdhury, J.: Phase noise in oscillators: a unifying theory and numerical methods for characterisation. IEEE Trans. Circ. Syst. I(47), 655–674 (2000)CrossRefGoogle Scholar
  19. 19.
    Zetterberg, P., Wolfgang, A., Westlund, A.: Initial multi-node and antenna transmitter and receiver architectures and schemes. mmMAGIC Deliverable D5.1 (2016)Google Scholar
  20. 20.
    Bürgisser, P., Clausen, M., Shokrollahi, A.: Algebraic Complexity Theory. Springer, Heidelberg (1997). Scholar
  21. 21.
    Jaeckel, S., Raschkowski, L., Börner, K., Thiele, L.: QuaDRiGa: a 3-D multi-cell channel model with time evolution for enabling virtual field trials. IEEE Trans. Antennas Propag. 62, 3242–3256 (2014)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Electronic SystemsAalborg UniversityAalborgDenmark

Personalised recommendations