Advertisement

A New High-Level Relay Hybrid Metaheuristic for Black-Box Optimization Problems

  • Julien Lepagnot
  • Lhassane Idoumghar
  • Mathieu Brévilliers
  • Maha Idrissi-Aouad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10764)

Abstract

In this paper, a high-level relay hybridization of three metaheuristics with different properties is proposed. Our objective is to investigate the use of this kind of hybridization to tackle black-box optimization problems. Indeed, without any knowledge about the nature of the problem to optimize, combining the strengths of different algorithms, belonging to different classes of metaheuristics, may increase the probability of success of the optimization process. The proposed hybrid algorithm combines the multiple local search algorithm for dynamic optimization, the success-history based adaptive differential evolution, and the standard particle swarm optimization 2011 algorithm. An experimental analysis using two well-known benchmarks is presented, i.e. the Black-Box Optimization Benchmarking (BBOB) 2015 and the Black Box optimization Competition (BBComp). The proposed algorithm obtains promising results on both benchmarks. The ones obtained at BBComp show the relevance of the proposed hybridization.

Keywords

High-level relay Hybrid metaheuristic Black-box optimization Local search Differential evolution Particle swarm optimization 

References

  1. 1.
    Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7(1), 109–124 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Clerc, M.: Standard Particle Swarm Optimisation (2012). 15 pages. https://hal.archives-ouvertes.fr/hal-00764996
  3. 3.
    Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2010: presentation of the noiseless functions (2015). 126 pages. http://coco.lri.fr/downloads/download15.03/bbobdocfunctions.pdf
  4. 4.
    Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking: experimental setup. Tech. rep., INRIA (2014). 20 pages. http://coco.lri.fr/downloads/download15.02/bbobdocexperiment.pdf
  5. 5.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks IV, Perth, Australia, pp. 1942–1948, November 1995Google Scholar
  6. 6.
    Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: A multiple local search algorithm for continuous dynamic optimization. J. Heuristics 19(1), 35–76 (2013)CrossRefGoogle Scholar
  7. 7.
    Loshchilov, I., Glasmachers, T.: Black-box optimization competition (2017). https://bbcomp.ini.rub.de
  8. 8.
    Talbi, E.G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)CrossRefGoogle Scholar
  9. 9.
    Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp. 71–78, June 2013Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Julien Lepagnot
    • 1
  • Lhassane Idoumghar
    • 1
  • Mathieu Brévilliers
    • 1
  • Maha Idrissi-Aouad
    • 1
  1. 1.Université de Haute-Alsace, LMIA (E.A. 3993)MulhouseFrance

Personalised recommendations