Sampled Walk and Binary Fitness Landscapes Exploration

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10764)

Abstract

In this paper we present and investigate partial neighborhood local searches, which only explore a sample of the neighborhood at each step of the search. We particularly focus on establishing links between the structure of optimization problems and the efficiency of such local search algorithms. In our experiments we compare partial neighborhood local searches to state-of-the-art tabu search and iterated local search and perform a parameter sensitivity analysis by observing the efficiency of partial neighborhood local searches with different size of neighborhood sample. In order to facilitate the extraction of links between instances structure and search algorithm behavior we restrain the scope to binary fitness landscapes, such as NK landscapes and landscapes derived from UBQP.

References

  1. 1.
    Basseur, M., Goëffon, A.: Hill-climbing strategies on various landscapes: an empirical comparison. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 479–486. ACM (2013)Google Scholar
  2. 2.
    Basseur, M., Goëffon, A.: Climbing combinatorial fitness landscapes. Appl. Soft Comput. 30, 688–704 (2015)CrossRefGoogle Scholar
  3. 3.
    Basseur, M., Goëffon, A., Traverson, H.: Exploring non-neutral landscapes with neutrality-based local search. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 165–169. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19084-6_15 CrossRefGoogle Scholar
  4. 4.
    Bateson, W., Waunders, E.R., Punnett, R.C.: Experimental studies in the physiology of heredity. Mol. Gen. Genet. MGG 2(1), 17–19 (1909)CrossRefGoogle Scholar
  5. 5.
    Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)Google Scholar
  6. 6.
    Glover, F., Laguna, M.: Tabu Search. Springer, New York (2013).  https://doi.org/10.1007/978-1-4615-6089-0 MATHGoogle Scholar
  7. 7.
    Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes and its application to maturation of the immune response. J. Theor. Biol. 141(2), 211–245 (1989)CrossRefGoogle Scholar
  8. 8.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Springer, Boston (2003).  https://doi.org/10.1007/0-306-48056-5_11 CrossRefGoogle Scholar
  9. 9.
    Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)CrossRefGoogle Scholar
  10. 10.
    Marmion, M.É., Jourdan, L., Dhaenens, C.: Fitness landscape analysis and metaheuristics efficiency. J. Math. Model. Algorithms 12, 3–26 (2013)MathSciNetMATHGoogle Scholar
  11. 11.
    Neveu, B., Trombettoni, G., Glover, F.: ID walk: a candidate list strategy with a simple diversification device. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 423–437. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30201-8_32 CrossRefGoogle Scholar
  12. 12.
    Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 555–562. ACM (2008)Google Scholar
  13. 13.
    Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 104–113. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15844-5_11 Google Scholar
  14. 14.
    Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63(5), 325–336 (1990)CrossRefMATHGoogle Scholar
  15. 15.
    Whitley, D., Howe, A.E., Hains, D.: Greedy or not? Best improving versus first improving stochastic local search for MAXSAT. In: AAAI (2013)Google Scholar
  16. 16.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution, vol. 1 (1932)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire d’Etude et de Recherche en Informatique d’Angers, UFR sciencesAngers Cedex 01France

Personalised recommendations