LIDeOGraM: An Interactive Evolutionary Modelling Tool

  • Thomas Chabin
  • Marc Barnabé
  • Nadia Boukhelifa
  • Fernanda Fonseca
  • Alberto Tonda
  • Hélène Velly
  • Benjamin Lemaitre
  • Nathalie Perrot
  • Evelyne Lutton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10764)

Abstract

Building complex models from available data is a challenge in many domains, and in particular in food science. Numerical data are often not enough structured, or simply not enough to elucidate complex structures: human choices have thus a major impact at various levels. LIDeOGraM is an interactive modelling framework adapted to cases where numerical data and expert knowledge have to be combined for building an efficient model. Exploiting both stand-alone evolutionary search and visual interaction with the user, the proposed methodology aims at obtaining an accurate global model for the system, balancing expert knowledge with information automatically extracted from available data. The presented framework is tested on a real-world case study from food science: the production and stabilisation of lactic acid bacteria, which has several important practical applications, ranging from assessing the efficacy of new industrial methods, to proposing alternative sustainable systems of food production.

Keywords

Complex systems Lactic acid bacteria Interactive modelling Symbolic regression Living food system 

Notes

Aknowledgements

We would like to express our thanks to Jean-Daniel Fekete from Inria Saclay, who provided great advice and insight on the graphical user interface of LIDeOGraM.

References

  1. 1.
    Allais, I., Perrot, N., Curt, C., Trystram, G.: Modelling the operator know-how to control sensory quality in traditional processes. J. Food Eng. 83(2), 156–166 (2007)CrossRefGoogle Scholar
  2. 2.
    Babovic, V., Keijzer, M.: An evolutionary approach to knowledge induction: genetic programming in hydraulic engineering. In: Proceedings of the World Water & Environmental Resources Congress (2001)Google Scholar
  3. 3.
    Champagne, C., Gardner, N., Brochu, E., Beaulieu, Y.: freeze-drying of lactic acid bacteria. A review. Can. Inst. Food Sci. Technol. J. (Journal de l’Institut canadien de science et technologie alimentaire) 24(3–4), 118–128 (1991)CrossRefGoogle Scholar
  4. 4.
    Chaouiya, C.: Petri net modelling of biological networks. Brief. Bioinform. 8(4), 210–219 (2007)CrossRefGoogle Scholar
  5. 5.
    Cros, M.J., Duru, M., Garcia, F., Martin-Clouaire, R.: A biophysical dairy farm model to evaluate rotational grazing management strategies. Agronomie 23(2), 105–122 (2003)CrossRefGoogle Scholar
  6. 6.
    Dai, Z.W., Vivin, P., Génard, M.: Modelling the effects of leaf-to-fruit ratio on dry and fresh mass accumulation in ripening grape berries. In: VIII International Symposium on Modelling in Fruit Research and Orchard Management, vol. 803, pp. 283–292 (2007)Google Scholar
  7. 7.
    Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)MathSciNetMATHGoogle Scholar
  8. 8.
    Gaucel, S., Keijzer, M., Lutton, E., Tonda, A.: Learning dynamical systems using standard symbolic regression. In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., García-Sánchez, P., Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 25–36. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44303-3_3 Google Scholar
  9. 9.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)MATHGoogle Scholar
  10. 10.
    Lutton, E., Perrot, N.: Complex systems in food science: human factor issues. In: 6th International Symposium on Delivery of Functionality in Complex Food Systems Physically-Inspired Approaches from the Nanoscale to the Microscale (2015)Google Scholar
  11. 11.
    Lutton, E., Perrot, N., Tonda, A.: Evolutionary Algorithms for Food Science and Technology. Wiley, Hoboken (2016)CrossRefGoogle Scholar
  12. 12.
    Passot, S., Fonseca, F., Cenard, S., Douania, I., Trelea, I.C.: Quality degradation of lactic acid bacteria during the freeze drying process: experimental study and mathematical modelling (2011)Google Scholar
  13. 13.
    Perrot, N., De Vries, H., Lutton, E., Van Mil, H.G., Donner, M., Tonda, A., Martin, S., Alvarez, I., Bourgine, P., Van Der Linden, E., et al.: Some remarks on computational approaches towards sustainable complex agri-food systems. Trends Food Sci. Technol. 48, 88–101 (2016)CrossRefGoogle Scholar
  14. 14.
    Perrot, N., Trelea, I.C., Baudrit, C., Trystram, G., Bourgine, P.: Modelling and analysis of complex food systems: state of the art and new trends. Trends Food Sci. Technol. 22(6), 304–314 (2011)CrossRefGoogle Scholar
  15. 15.
    Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B.: Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems. Int. J. Prod. Econ. 145(1), 67–77 (2013)CrossRefGoogle Scholar
  16. 16.
    Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)CrossRefGoogle Scholar
  17. 17.
    Sicard, M., Baudrit, C., Leclerc-Perlat, M., Wuillemin, P.H., Perrot, N.: Expert knowledge integration to model complex food processes. Application on the camembert cheese ripening process. Expert Syst. Appl. 38(9), 11804–11812 (2011)CrossRefGoogle Scholar
  18. 18.
    Velly, H., Bouix, M., Passot, S., Penicaud, C., Beinsteiner, H., Ghorbal, S., Lieben, P., Fonseca, F.: Cyclopropanation of unsaturated fatty acids and membrane rigidification improve the freeze-drying resistance of lactococcus lactis subsp. lactis tomsc161. Appl. Microbiol. Biotechnol. 99(2), 907–918 (2015)CrossRefGoogle Scholar
  19. 19.
    Velly, H., Fonseca, F., Passot, S., Delacroix-Buchet, A., Bouix, M.: Cell growth and resistance of lactococcus lactis subsp. lactis tomsc161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions. J. Appl. Microbiol. 117(3), 729–740 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Chabin
    • 1
  • Marc Barnabé
    • 1
  • Nadia Boukhelifa
    • 1
  • Fernanda Fonseca
    • 1
  • Alberto Tonda
    • 1
  • Hélène Velly
    • 1
  • Benjamin Lemaitre
    • 1
  • Nathalie Perrot
    • 1
  • Evelyne Lutton
    • 1
  1. 1.UMR 782 GMPA, Agroparistech, INRA, Université Paris-SaclayThiverval-GrignonFrance

Personalised recommendations