H-ACO: A Heterogeneous Ant Colony Optimisation Approach with Application to the Travelling Salesman Problem

  • Ahamed Fayeez Tuani
  • Edward Keedwell
  • Matthew Collett
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10764)

Abstract

Ant Colony Optimization (ACO) is a field of study that mimics the behaviour of ants to solve computationally hard problems. The majority of research in ACO focuses on homogeneous ants although animal behaviour research suggests that heterogeneity in behaviour improves the overall efficiency of ant colonies. This paper introduces and analyses the effects of heterogeneity of behavioural traits in ACO to solve hard optimisation problems by introducing unique biases towards the pheromone trail and local heuristics for each ant. The well-known Ant System (AS) and Max-Min Ant System (MMAS) are used as the base algorithms to implement heterogeneity and experiments show that this method improves the performance when applied on Travelling Salesman Problem (TSP) instances particularly for larger instances. The diversity preservation introduced by this algorithm helps balance exploration-exploitation, increases robustness with respect to parameter settings and reduces the number of algorithm parameters that need to be set.

Keywords

Heterogeneity Heterogeneous ACO TSP Diversity 

Notes

Acknowledgments

We would like to thank the Faculty of Electronics and Computer Engineering (FKEKK), Technical University of Malaysia Malacca (UTeM) and the Ministry of Higher Education (MoHE) Malaysia for the financial support under the SLAB/SlAI program.

References

  1. 1.
    Blum, C.: ACO applied to group shop scheduling: a case study on intensification and diversification. In: Dorigo, M., Di Caro, G., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 14–27. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45724-0_2 CrossRefGoogle Scholar
  2. 2.
    Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48661-5 MATHGoogle Scholar
  3. 3.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1), 29–41 (1996)CrossRefGoogle Scholar
  4. 4.
    Modlmeier, A.P., Foitzik, S.: Productivity increases with variation in aggression among group members in temnothorax ants. Behav. Ecol. 22(5), 1026–1032 (2011)CrossRefGoogle Scholar
  5. 5.
    Collett, M., Collett, T.S.: Spatial aspects of foraging in Ants and Bees. Cold Spring Harbor Monograph Series, vol. 49, pp. 467–502 (2007)Google Scholar
  6. 6.
    Stutzle, T., Hoos, H.: MAX MIN ant system and local search for the traveling salesman problem. In: IEEE International Conference on Evolutionary Computation, pp. 309–314 (1997)Google Scholar
  7. 7.
    Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and its Variations, vol. 12. Springer, Boston (2007).  https://doi.org/10.1007/b101971 MATHGoogle Scholar
  8. 8.
    Engelbrecht, A.P.: Heterogeneous particle swarm optimization. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 191–202. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15461-4_17 CrossRefGoogle Scholar
  9. 9.
    Blight, O., Daz-Mariblanca, G.A., Cerd, X., Boulay, R.: A proactive reactive syndrome affects group success in an ant species. Behav. Ecol. 27(1), 118–125 (2016)CrossRefGoogle Scholar
  10. 10.
    Lee, J.W., Lee, J.J.: Novel ant colony optimization algorithm with path crossover and heterogeneous ants for path planning. In: Proceedings of the IEEE International Conference on Industrial Technology (2010)Google Scholar
  11. 11.
    Chira, C., Dumitrescu, D., Pintea, C.M.: Heterogeneous sensitive ant model for combinatorial optimization. Genet. Evol. Comput., p. 163 (2008)Google Scholar
  12. 12.
    Hara, A., Matsushima, S., Ichimura, T., Takahama, T.: Ant colony optimization using exploratory ants for constructing partial solutions. In: IEEE World Congress on Computational Intelligence, WCCI 2010–2010, IEEE Congress on Evolutionary Computation, CEC 2010 (2010)Google Scholar
  13. 13.
    Yoshikawa, M.: Adaptive ant colony optimization with cranky ants. In: Huang, X., Ao, S.I., Castillo, O. (eds.) Intelligent Automation and Computer Engineering. Lecture Notes in Electrical Engineering, vol. 52, pp. 41–52. Springer, Netherlands (2009).  https://doi.org/10.1007/978-90-481-3517-2_4 CrossRefGoogle Scholar
  14. 14.
    Zhang, P., Lin, J.: An adaptive heterogeneous multiple ant colonies system. In: Proceedings - International Conference of Information Science and Management Engineering, ISME 2010 (2010)Google Scholar
  15. 15.
    Melo, L., Pereira, F., Costa, E.: Extended experiments with ant colony optimization with heterogeneous ants for large dynamic traveling salesperson problems. In: Proceedings - 14th International Conference on Computing Science and its Applications, ICCSA 2014, pp. 171–175 (2014)Google Scholar
  16. 16.
    Stutzle, T., et al.: Parameter Adaptation in Ant Colony Optimization IRIDIA Technical Report Series Parameter Adaptation in Ant Colony Optimization (2010)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ahamed Fayeez Tuani
    • 1
  • Edward Keedwell
    • 1
  • Matthew Collett
    • 2
  1. 1.College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterEngland
  2. 2.Animal Behaviour Laboratory, College of Life and Environmental SciencesUniversity of ExeterExeterEngland

Personalised recommendations