Improved Hybrid Iterative Tabu Search for QAP Using Distance Cooperation

  • Omar Abdelkafi
  • Lhassane Idoumghar
  • Julien Lepagnot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10764)


The quadratic assignment problem can be considered as one of the hardest and most studied combinatorial problems. In this paper, we propose and analyze three distributed algorithms based on hybrid iterative tabu search. These algorithms follow the design of the parallel algorithmic level. A new mechanism to exchange information between processes is introduced. Through 34 well-known instances from QAPLIB benchmark, our algorithms produce competitive results. This experimentation shows that our best propositions can exceed or equal several leading algorithms from the literature in almost all the hardest benchmark instances.


Metaheuristics Iterative tabu search Quadratic assignment problem Cooperative and distributed algorithms 


  1. 1.
    Benlic, U., Hao, J.K.: Breakout local search for the quadratic assignement problem. Appl. Math. Comput. 219(9), 4800–4815 (2013)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Benlic, U., Hao, J.K.: Memetic search for the quadratic assignment problem. Expert Syst. Appl. 42, 584–595 (2015)CrossRefGoogle Scholar
  3. 3.
    Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment problem library. J. Glob. Optim. 10(4), 391–403 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem. Comput. Oper. Res. 35(3), 717–736 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Drezner, Z., Hahn, P.M., Taillard, E.: Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Ann. Oper. Res. 139(1), 65–94 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Duman, E., Or, I.: The quadratic assignement problem in the context of the printed circuit board assembly process. Comput. Oper. Res. 34(1), 163–179 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 1–51. Springer, Heidelberg (1998). CrossRefGoogle Scholar
  8. 8.
    James, T., Rego, C., Glover, F.: A cooperative parallel tabu search algorithm for the quadratic assignment problem. Eur. J. Oper. Res. 195(3), 810–826 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    James, T., Rego, C., Glover, F.: Multistart tabu search and diversification strategies for the quadratic assignment problem. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(3), 579–596 (2009)CrossRefGoogle Scholar
  10. 10.
    Koopmans, T., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25(1), 53–76 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Loiola, E.M., de Abreu, N.M.M., Netto, P.O.B., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans. Evol. Comput. 4(4), 337–352 (2000)CrossRefGoogle Scholar
  13. 13.
    Misevicius, A.: An improved hybrid genetic algorithm: new results for the quadratic assignment problem. Knowl. Based Syst. 17(2–4), 65–73 (2004)CrossRefGoogle Scholar
  14. 14.
    Misevicius, A., Kilda, B.: Iterated tabu search: an improvement to standard tabu search. Inf. Technol. Control 35(3), 187–197 (2006)Google Scholar
  15. 15.
    Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res. 174(3), 1519–1539 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Taillard, E.: Robust taboo search for the quadratic assignement problem. Parallel Comput. 17(4–5), 443–455 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Talbi, E.G.: Metaheuristics: from Design to Implementation. Wiley, University of Lille - CNRS - INRIA, Hoboken (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Ulutas, B.H., Konak, S.K.: An artificial immune system based algorithm to solve unequal area facility layout problem. Expert Syst. Appl. 39(5), 5384–5395 (2012)CrossRefGoogle Scholar
  19. 19.
    Wu, Q., Hao, J.K.: Solving the winner determination problem via a weighted maximum clique heuristic. Expert Syst. Appl. 42(1), 355–365 (2015)CrossRefGoogle Scholar
  20. 20.
    Zhang, Q., Sun, J., Tsang, E.: An evolutionary algorithm with guided mutation for the maximum clique problem. IEEE Trans. Evol. Comput. 9(2), 192–200 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Omar Abdelkafi
    • 1
  • Lhassane Idoumghar
    • 2
  • Julien Lepagnot
    • 2
  1. 1.Université Lille 1, CRIStAL/UMR CNRS 9189 - INRIA Lille Nord EuropeVilleneuve d’Ascq cedexFrance
  2. 2.Université de Haute-Alsace, LMIA, EA 3993MulhouseFrance

Personalised recommendations