Parallel Online Learning of Event Definitions

  • Nikos KatzourisEmail author
  • Alexander Artikis
  • Georgios Paliouras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10759)


Logic-based event recognition systems infer occurrences of events in time using a set of event definitions in the form of first-order rules. The Event Calculus is a temporal logic that has been used as a basis in event recognition applications, providing among others, direct connections to machine learning, via Inductive Logic Programming (ILP). OLED is a recently proposed ILP system that learns event definitions in the form of Event Calculus theories, in a single pass over a data stream. In this work we present a version of OLED that allows for parallel, online learning. We evaluate our approach on a benchmark activity recognition dataset and show that we can reduce training times, while achieving super-linear speed-ups on some occasions.



This work is funded by the H2020 project datAcron (687591).


  1. 1.
    Alevizos, E., Skarlatidis, A., Artikis, A., Paliouras, G.: Probabilistic complex event recognition: a survey. ACM Comput. Surv. (2018, to appear)Google Scholar
  2. 2.
    Appice, A., Ceci, M., Turi, A., Malerba, D.: Sampling very large databases for parallel and distributed relational frequent pattern discovery. In: First International Workshop on Ubiquitous Knowledge Discovery Workshop (2008)Google Scholar
  3. 3.
    Appice, A., Ceci, M., Turi, A., Malerba, D.: A parallel, distributed algorithm for relational frequent pattern discovery from very large data sets. Intell. Data Anal. 15(1), 69–88 (2011)CrossRefGoogle Scholar
  4. 4.
    Artikis, A., Sergot, M., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015)CrossRefGoogle Scholar
  5. 5.
    Artikis, A., Skarlatidis, A., Paliouras, G.: Behaviour recognition from video content: a logic programming approach. Int. J. Artif. Intell. Tools 19(2), 193–209 (2010)CrossRefGoogle Scholar
  6. 6.
    Artikis, A., Skarlatidis, A., Portet, F., Paliouras, G.: Logic-based event recognition. Knowl. Eng. Rev. 27(4), 469–506 (2012)CrossRefGoogle Scholar
  7. 7.
    Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101(1), 285–297 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008). CrossRefzbMATHGoogle Scholar
  9. 9.
    Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co., Greenwich (2010)Google Scholar
  10. 10.
    Fidjeland, A.K., Luk, W., Muggleton, S.H.: Customisable multi-processor acceleration of inductive logic programming. In: Latest Advances in Inductive Logic Programming, pp. 123–141 (2014)CrossRefGoogle Scholar
  11. 11.
    Fonseca, N.A., Silva, F.M.A., Costa, V.S., Camacho, R.: A pipelined data-parallel algorithm for ILP. In: 2005 IEEE International Conference on Cluster Computing (CLUSTER 2005), Boston, Massachusetts, USA, 26–30 September 2005, pp. 1–10 (2005)Google Scholar
  12. 12.
    Fonseca, N.A., Srinivasan, A., Silva, F., Camacho, R.: Parallel ILP for distributed-memory architectures. Mach. Learn. 74(3), 257–279 (2009)CrossRefGoogle Scholar
  13. 13.
    Gama, J.: Knowledge Discovery from Data Streams. CRC Press, Florida (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Graham, J.H., David Page Jr., C., Kamal, A.H.: Accelerating the drug design process through parallel inductive logic programming data mining. In: 2nd IEEE Computer Society Bioinformatics Conference, CSB 2003, Stanford, CA, USA, 11–14 August 2003, pp. 400–402 (2003)Google Scholar
  15. 15.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Katzouris, N.: Scalable relational learning for event recognition. Ph.D. thesis, University of Athens (2017).
  17. 17.
    Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with inductive logic programming. Mach. Learn. 100(2–3), 555–585 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Katzouris, N., Artikis, A., Paliouras, G.: Online learning of event definitions. TPLP 16(5–6), 817–833 (2016)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)CrossRefzbMATHGoogle Scholar
  20. 20.
    Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13(3&4), 245–286 (1995)CrossRefGoogle Scholar
  21. 21.
    Nishiyama, H., Ohwada, H.: Yet another parallel hypothesis search for inverse entailment. In: ILP (2015)Google Scholar
  22. 22.
    Ohwada, H., Mizoguchi, F.: Parallel execution for speeding up inductive logic programming systems. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI), vol. 1721, pp. 277–286. Springer, Heidelberg (1999). CrossRefGoogle Scholar
  23. 23.
    Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA management. Decis. Support Syst. 46(1), 187–205 (2008)CrossRefGoogle Scholar
  24. 24.
    Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.: Online event recognition from moving vessel trajectories. GeoInformatica 21(2), 389–427 (2017)CrossRefGoogle Scholar
  25. 25.
    Rodrigues, C., Soldano, H., Bourgne, G., Rouveirol, C.: A consistency based approach of action model learning in a community of agents. In: International conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2014, Paris, France, 5–9 May 2014, pp. 1557–1558 (2014)Google Scholar
  26. 26.
    Rodrigues, C., Soldano, H., Bourgne, G., Rouveirol, C.: Multi agent learning of relational action models. In: ECAI 2014 - 21st European Conference on Artificial Intelligence, 18–22 August 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014), pp. 1087–1088 (2014)Google Scholar
  27. 27.
    Silva, A., Antunes, C.: Multi-relational pattern mining over data streams. Data Min. Knowl. Disc. 29(6), 1783–1814 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Skillicorn, D.B., Wang, Y.: Parallel and sequential algorithms for data mining using inductive logic. Knowl. Inf. Syst. 3(4), 405–421 (2001)CrossRefzbMATHGoogle Scholar
  29. 29.
    Srinivasan, A., Bain, M.: Relational models with streaming ILP. In: ILP (2013)Google Scholar
  30. 30.
    Srinivasan, A., Faruquie, T.A., Joshi, S.: Data and task parallelism in ILP using mapreduce. Mach. Learn. 86(1), 141–168 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nikos Katzouris
    • 1
    Email author
  • Alexander Artikis
    • 1
    • 2
  • Georgios Paliouras
    • 1
  1. 1.National Center for Scientific Research “Demokritos”AthensGreece
  2. 2.Department of Maritime StudiesUniversity of PiraeusPiraeusGreece

Personalised recommendations