Advertisement

Exploring Graph Analytics with the PCJ Toolbox

  • Roxana Istrate
  • Panagiotis Kl. Barkoutsos
  • Michele Dolfi
  • Peter W. J. Staar
  • Costas Bekas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10778)

Abstract

Graph analysis is an intrinsic tool embedded in the big data domain. The demand in processing of bigger and bigger graphs requires highly efficient and parallel applications. In this work we explore the possibility of employing the new PCJ library for distributed calculations in Java. We apply the toolbox to sparse matrix matrix multiplications and the k-means clustering problem. We benchmark the strong scaling performance against an equivalent C++/MPI implementation. Our benchmarks found comparable good scaling results for algorithms using mainly local point-to-point communications, and exposed the potential for logarithmic collective operations directly available in the PCJ library. Further more, we also experienced an improvement of development time to solution, as a result of the high level abstractions provided by Java and PCJ.

Keywords

PCJ MPI PGAS Java C++ SPMM Sparse K-means Graph analytics 

Notes

Acknowledgements

The authors wish to thank Piotr Bała and Marek Nowicki for driving the development of the PCJ library and for fruitful discussions and debugging. This work was partial supported by the CHIST-ERA consortium.

References

  1. 1.
    Parallel computing in Java. https://pcj.icm.edu.pl
  2. 2.
    Estrada, E.: Subgraph centrality in complex networks. Phys. Rev. E 71(5), 056103 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Estrada, E., et al.: Network properties revealed through matrix functions. SIAM Rev. 52(4), 696–714 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Leskovec, J., Krevl, A.: Snap datasets: Stanford large network dataset collection (2014). http://snap.stanford.edu/data
  5. 5.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Nowicki, M., Górski, Ł., Grabrczyk, P., Bala, P.: PCJ - Java library for high performance computing in PGAS model. In: 2014 International Conference on High Performance Computing Simulation (HPCS), pp. 202–209, July 2014.  https://doi.org/10.1109/HPCSim.2014.6903687
  7. 7.
    Nowicki, M., Bzhalava, D., Bała, P.: Massively parallel sequence alignment with BLAST through work distribution implemented using PCJ library. In: Ibrahim, S., Choo, K.-K.R., Yan, Z., Pedrycz, W. (eds.) ICA3PP 2017. LNCS, vol. 10393, pp. 503–512. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65482-9_36 CrossRefGoogle Scholar
  8. 8.
    Ropo, M., Westerholm, J., Dongarra, J. (eds.): Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03770-2. ISBN: 978-3-642-03769-6Google Scholar
  9. 9.
    Ryczkowska, M., Nowicki, M., Bala, P.: The performance evaluation of the Java implementation of Graph500. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 221–230. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32152-3_21 CrossRefGoogle Scholar
  10. 10.
    Ryczkowska, M., Nowicki, M., Bała, P.: Level-synchronous BFS algorithm implemented in Java using PCJ library. In: 2016 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 596–601 (2016)Google Scholar
  11. 11.
    Staar, P.W.J., Barkoutsos, P.K., Istrate, R., Malossi, A.C.I., Tavernelli, I., Moll, N., Giefers, H., Hagleitner, C., Bekas, C., Curioni, A.: Stochastic matrix-function estimators: scalable big-data kernels with high performance. In: 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 812–821 (2016).  https://doi.org/10.1109/IPDPS.2016.34
  12. 12.
    Tinney, W.F., Walker, J.W.: Direct solutions of sparse network equations by optimally ordered triangular factorization. Proc. IEEE 55(11), 1801–1809 (1967)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Roxana Istrate
    • 1
  • Panagiotis Kl. Barkoutsos
    • 1
  • Michele Dolfi
    • 1
  • Peter W. J. Staar
    • 1
  • Costas Bekas
    • 1
  1. 1.IBM Research - Zurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations