Skip to main content

Scheduling Data Gathering with Maximum Lateness Objective

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10778))

Abstract

In this paper, scheduling in a star data gathering network is studied. The worker nodes of the network produce datasets that have to be gathered by a single base station. The datasets may be released at different moments. Each dataset is assigned a due date by which it should arrive at the base station. The scheduling problem is to organize the communication in the network so that the maximum dataset lateness is minimized. As this problem is strongly NP-hard, we propose a heuristic algorithm for solving it. The performance of the algorithm is evaluated on the basis of computational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshar-Nadjafi, B.: Resource constrained project scheduling subject to due dates: preemption permitted with penalty. Adv. Oper. Res. 2014, 10 p. (2014)

    Google Scholar 

  2. Afshar-Nadjafi, B., Majlesi, M.: Resource constrained project scheduling problem with setup times after preemptive processes. Comput. Chem. Eng. 69, 16–25 (2014)

    Article  Google Scholar 

  3. Allahverdi, A.: Minimizing mean flowtime in a two-machine flowshop with sequence-independent setup times. Comput. Oper. Res. 27, 111–127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187, 985–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berlińska, J.: Communication scheduling in data gathering networks with limited memory. Appl. Math. Comput. 235, 530–537 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Berlińska, J.: Scheduling for data gathering networks with data compression. Eur. J. Oper. Res. 246, 744–749 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berlińska, J.: Scheduling data gathering with variable communication speed. In: Proceedings of the First International Workshop on Dynamic Scheduling Problems, pp. 29–32 (2016)

    Google Scholar 

  8. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling Divisible Loads in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  9. Chan, H.-L., Lam, T.-W., Li, R.: Online flow time scheduling in the presence of preemption overhead. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 85–97. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32512-0_8

    Chapter  Google Scholar 

  10. Choi, K., Robertazzi, T.G.: Divisible load scheduling in wireless sensor networks with information utility. In: IEEE International Performance Computing and Communications Conference 2008, IPCCC 2008, pp. 9–17 (2008)

    Google Scholar 

  11. Condotta, A., Knust, S., Shakhlevich, N.V.: Parallel batch scheduling of equal-length jobs with release and due dates. J. Sched. 13, 463–477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Drozdowski, M.: Scheduling for Parallel Processing. Springer, London (2009). https://doi.org/10.1007/978-1-84882-310-5

    Book  MATH  Google Scholar 

  13. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Graves, G.H., Lee, C.Y.: Scheduling maintenance and semiresumable jobs on a single machine. Nav. Res. Logist. 46, 845–863 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hall, L.A., Shmoys, D.B.: Jackson’s rule for single-machine scheduling: making a good heuristic better. Math. Oper. Res. 17, 22–35 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heydari, M., Sadjadi, S.J., Mohammadi, E.: Minimizing total flow time subject to preemption penalties in online scheduling. Int. J. Adv. Manuf. Technol. 47, 227–236 (2010)

    Article  Google Scholar 

  17. Horn, W.A.: Some simple scheduling algorithms. Nav. Res. Logist. Q. 21, 177–185 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jackson, J.R.: Scheduling a production line to minimize maximum tardiness. Research Report 43, Management Sciences Research Project, UCLA (1955)

    Google Scholar 

  19. Liu, Z., Cheng, T.C.E.: Scheduling with job release dates, delivery times and preemption penalties. Inf. Process. Lett. 82, 107–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Z., Cheng, T.C.E.: Minimizing total completion time subject to job release dates and preemption penalties. J. Sched. 7, 313–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moges, M., Robertazzi, T.G.: Wireless sensor networks: scheduling for measurement and data reporting. IEEE Trans. Aerosp. Electron. Syst. 42, 327–340 (2006)

    Article  MATH  Google Scholar 

  22. Nasri, M., Nelissen, G., Fohler, G.: A new approach for limited preemptive scheduling in systems with preemption overhead. In: 2016 28th Euromicro Conference on Real-Time Systems (ECRTS), pp. 25–35 (2016)

    Google Scholar 

  23. Phavorin, G., Richard, P.: Cache-related preemption delays and real-time scheduling: a survey for uniprocessor systems. Technical report, Laboratoire d’Informatique et d’Automatique pour les Systemes (2015)

    Google Scholar 

  24. Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup times. In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms, pp. 759–767 (1999)

    Google Scholar 

  25. Thekkilakattil, A., Dobrin, R., Punnekkat, S.: The limited-preemptive feasibility of real-time tasks on uniprocessors. Real-Time Syst. 51, 247–273 (2015)

    Article  MATH  Google Scholar 

  26. Ward, B.C., Thekkilakattil, A., Anderson, J.H.: Optimizing preemption-overhead accounting in multiprocessor real-time systems. In: Proceedings of the 22nd International Conference on Real-Time Networks and Systems, pp. 235–246 (2014)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Science Centre, Poland, grant 2016/23/D/ST6/00410.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Berlińska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berlińska, J. (2018). Scheduling Data Gathering with Maximum Lateness Objective. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10778. Springer, Cham. https://doi.org/10.1007/978-3-319-78054-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78054-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78053-5

  • Online ISBN: 978-3-319-78054-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics