Geochemical Analysis

  • Vahid Tavakoli
Part of the SpringerBriefs in Petroleum Geoscience & Engineering book series (BRIEFSPGE)


Inorganic geochemistry is used indirectly for reservoir rock analysis. Carbon and oxygen stable isotopes, strontium isotopes, and elemental concentrations are used for this purpose. In isotope analysis, the ratio of the heavier to the lighter isotope type is measured. This ratio is compared to a standard. The difference is positive if the sample contains heavier isotopes and is negative if it is reached in light isotopes. The fractionation has a major role in isotope values of different samples. Vital effects, for example, cause negative excursion in organisms. Both carbon and oxygen isotope ratios are used for sequence stratigraphy and reservoir zonation, recognition of nonconformities, and hiatuses and mass extinctions. Paleotemperature can be calculated by oxygen isotope ratios. The balance between continental and mantle Sr input to the oceans determines the variations of this isotope. The result is used for absolute age dating and understanding sea-level fluctuations. Elemental analysis of the rocks also provides some important proxies for interpreting paleoenvironmental conditions, stratigraphic correlations, facies classifying, provenance studies, and the rate of weathering. Uranium geochemistry has attracted more attention in recent years because it is available from many reservoirs through spectral gamma logging. Rate of erosion and redox conditions, as well as original mineralogy are inferred from uranium distribution in a studied formation. Sample selection is very important in geochemical analysis because the final results and interpretations strongly depend on sample type, distance from each other, and final quality control. Studies of some of these aspects and their applications are just at their beginning stages.


  1. Berger WH, Vincent E (1986) Deep-sea carbonates: reading the carbon isotope signal. Geol Rundsch 75:249–269CrossRefGoogle Scholar
  2. Blatt H, Middleton G, Murray R (1972) Origin of sedimentary rocks. Prentice Hall, New JerseyGoogle Scholar
  3. Craigie N (2018) Principles of elemental chemostratigraphy. Springer, ChamCrossRefGoogle Scholar
  4. Ehrenberg SN, Svana TA, Swart PK (2008) Uranium depletion across the Permian-Triassic boundary in Middle East carbonates: signature of oceanic anoxia. AAPG Bull 92:691–707CrossRefGoogle Scholar
  5. Elderfield H (1986) Strontium isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 57:71–90CrossRefGoogle Scholar
  6. Emrich K, Ehhalt DH, Vogel JC (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett 8:363–371CrossRefGoogle Scholar
  7. Epstein S, Buchsbaum R, Lowenstam H, Urey H (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326CrossRefGoogle Scholar
  8. Erez J, Luz B (1983) Experimental paleotemperature equation for planktonic foraminifera. Geochim Cosmochim Acta 47:1025–1031CrossRefGoogle Scholar
  9. Fiet N, Gorin GE (2000) Gamma-ray spectrometry as a tool for stratigraphic correlations in the carbonate-dominated, organic rich, pelagic Albian sediments in central Italy. Eclogae Geol Helv 93:175–181Google Scholar
  10. Grossman EL (1984) Carbon isotopic fractionation in live benthic foraminifera—comparison with inorganic precipitate studies. Geochim Cosmochim Acta 48:1505–1512CrossRefGoogle Scholar
  11. Heydari E, Arzani N, Safaei M, Hassanzadeh J (2013) Ocean’s response to a changing climate: clues from variations in carbonate mineralogy across the Permian-Triassic boundary of the Shareza Section, Iran. Global Planet Change 105:79–90CrossRefGoogle Scholar
  12. Hoefs J (2009) Stable isotope geochemistry. Springer, BerlinGoogle Scholar
  13. Holmden C, Creaser RA, Muehlenbachs K, Leslie SA, Bergström SM (1998) Isotopic evidence for geochemical decoupling between ancient epeiric seas and bordering oceans: implications for secular curves. Geology 26:567–570CrossRefGoogle Scholar
  14. Huck S, Heimhofer U, Immenhauser A, Weissert H (2013) Carbon-isotope stratigraphy of Early Cretaceous (urgonian) shoal-water deposits: diachronous changes in carbonate-platform production in the north-western Tethys. Sed Geol 290:157–174CrossRefGoogle Scholar
  15. Immenhauser A, Della Porta G, Kenter JAM, Bahamonde JR (2003) An alternative model for positive shifts in shallow-marine carbonate δ13C and δ18O. Sedimentology 50:953–959CrossRefGoogle Scholar
  16. Kroopnick P (1985) The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Res 32:57–84CrossRefGoogle Scholar
  17. Lahijani H, Tavakoli V (2012) Identifying provenance of South Caspian coastal sediments using mineral distribution pattern. Quatern Int 261:128–137CrossRefGoogle Scholar
  18. McArthur J (2007) Recent trends in strontium isotope stratigraphy. Terra Nova 6:331–358CrossRefGoogle Scholar
  19. McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS Version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–157CrossRefGoogle Scholar
  20. McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Felix M, Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale 2012, pp 127–144Google Scholar
  21. McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  22. McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophy Geosy 2:2000GC000109Google Scholar
  23. Miura K (1973) Weathering in plutonic rocks. Part I weathering during the late-Pliocene of Gotsu plutonic rock. J Soc Eng Geol Jpn 14(3)Google Scholar
  24. Naderi-Khujin M, Seyrafian A, Vaziri-Moghaddam H, Tavakoli V (2016) Characterization of the late Aptian top-Dariyan disconformity surface offshore SW Iran: a multiproxy approach. J Petrol Geol 39:269–286CrossRefGoogle Scholar
  25. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717CrossRefGoogle Scholar
  26. Palmer MR, Elderfield H (1985) Sr isotope composition of sea water over the past 75 Myr. Nature 314:526–528CrossRefGoogle Scholar
  27. Pearce TJ, Wray DS, Ratcliffe KT, Wright DK, Moscariella A (2005) Chemostratigraphy of the upper carboniferous schooner formation, southern North Sea. In Colinson JD, Evans DJ, Holiday DW, Jones NS (eds) Carboniferous hydrocarbon geology: the southern North Sea and surrounding onshore areas Yorkshire Geological Society, Occasional Publication Series, vol 7. Yorkshire, pp 147–164Google Scholar
  28. Ramkumar Mu (ed) (2015) Chemostratigraphy: concepts, techniques and application. Elsevier, AmsterdamGoogle Scholar
  29. Reiche P (1943) Graphic representation of chemical weathering. J Sediment Petrol 13:58–68Google Scholar
  30. Retallack GJ (1997) A colour guide to paleosols. Wiley, ChichesterGoogle Scholar
  31. Rosman JR, Taylor PD (1998) Isotopic compositions of the elements (technical report): commission on atomic weights and isotopic abundances. Pure Appl Chem 70:217–235CrossRefGoogle Scholar
  32. Spirakis CS (1996) The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geol Rev 11:53–69CrossRefGoogle Scholar
  33. Srinivasan MS, Sinha DK (1998) Early Pliocene closing of the Indonesian Seaway: evidence from northeast Indian Ocean and southwest Pacific deep sea cores. J Southe Asian Earth 16:29–44CrossRefGoogle Scholar
  34. Swart PK, Eberli G (2005) The nature of the δ13C of periplatform sediments: implications for stratigraphy and the global carbon cycle. Sed Geol 175:115–129CrossRefGoogle Scholar
  35. Tavakoli V (2016) Ocean chemistry revealed by mineralogical and geochemical evidence at the Permian-Triassic mass extinction, offshore the Persian Gulf, Iran. Acta Geol Sin 90:1852–1864CrossRefGoogle Scholar
  36. Tavakoli V, Rahimpour-Bonab H (2012) Uranium depletion across Permian-Triassic boundary in Persian Gulf and its implications for paleooceanic conditions. Palaeogeogr Palaeoclimatol Palaeoecol 350:101–113CrossRefGoogle Scholar
  37. Tavakoli V, Naderi-Khujin M, Seyedmehdi Z (2018) The end-Permian regression in the western Tethys: sedimentological and geochemical evidence from offshore the Persian Gulf, Iran. Geo-Mar Lett 38:179–192Google Scholar
  38. Tiwari M, Singh AK, Sinha DK (2015) Stable isotopes: tools for understanding past climatic conditions and their applications in chemostratigraphy. In: Ramkumar Mu (ed) Chemostratigraphy: concepts, techniques and application. Elsevier, Amsterdam, pp 65–92CrossRefGoogle Scholar
  39. Veizer J (1989) Strontium isotopes in seawater through time. Annu Rev Earth Planet Sci 17:141–167CrossRefGoogle Scholar
  40. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl P, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  41. Wedepohl KH (1971) Environmental influences on the chemical composition of shales and clays. In: Ahrens LH, Press F, Runcorn SK, Urey HC (eds) Physics and chemistry of the Earth. Pergamon, OxfordGoogle Scholar
  42. Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248CrossRefGoogle Scholar
  43. Wierzbowski H (2013) Strontium isotope composition of sedimentary rocks and its application to chemostratigraphy and palaeoenvironmental reconstructions. Ann Phys 68:23–37Google Scholar
  44. Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158CrossRefGoogle Scholar
  45. Yang Y, Fang X, Li M, Galy A, Koutsodendris A, Zhang W (2015) Paleoenvironmental implications of uranium concentrations in lacustrine calcareous clastic-evaporite deposits in the western Qaidam Basin. Palaeogeogr Palaeoclimatol Palaeoecol 417:422–431CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of Geology, College of ScienceUniversity of TehranTehranIran

Personalised recommendations