A Comparison of Accuracy and Efficiency of Parallel Solvers for Fractional Power Diffusion Problems

  • Raimondas ČiegisEmail author
  • Vadimas Starikovičius
  • Svetozar Margenov
  • Rima Kriauzienė
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10777)


In this paper, we construct and investigate parallel solvers for three dimensional problems described by fractional powers of elliptic operators. The main aim is to make a scalability analysis of parallel versions of several state of the art solvers. The originality of this work is that we also consider the accuracy of the selected numerical algorithms. For comparison of accuracy, we use solutions obtained solving the test problem by the Fourier algorithm. Such analysis enables to compare the efficiency of the proposed parallel algorithms depending on the required accuracy of solution and on a number of processes used in computations.


Fractional diffusion Finite volume method Parallel numerical algorithms MPI Scalability Multigrid 



The work of authors was supported by EU under the COST programme Action IC1305, “Network for Sustainable Ultrascale Computing (NESUS)”. The third author has been partially supported by the Bulgarian National Science Fund under Grant BNSF-DN12/1.


  1. 1.
    Bonito, A., Pasciak, J.: Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84, 2083–2110 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Harizanov, S., Lazarov, R., Margenov, S., Marinov, P., Vutov, Y.: Optimal solvers for linear systems with fractional powers of sparse SPD matrices. Numer. Linear Algebra Appl. e2167 (2018).
  3. 3.
    Nochetto, R., Otárola, E., Salgado, A.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Nochetto, R., Otárola, E., Salgado, A.: A PDE approach to numerical fractional diffusion. In: Proceedings of the 8th ICIAM, Beijing, China, pp. 211–236 (2015)Google Scholar
  5. 5.
    Vabishchevich, P.: Numerical solving unsteady space-fractional problems with the square root of an elliptic operator. Math. Model. Anal. 21(2), 220–238 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Čiegis, R., Tumanova, N.: On construction and analysis of finite difference schemes for pseudoparabolic problems with nonlocal boundary conditions. Math. Modell. Anal. 19(2), 281–297 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Čiegis, R., Starikovičius, V., Margenov, S.: On parallel numerical algorithms for fractional diffusion problems. In: Third NESUS Workshop, IICT-BAS, Sofia, Bulgaria, 6–7 Oct 2016, NESUS, ICT COST Action IC1305 (2016)Google Scholar
  8. 8.
    Čiegis, R., Starikovičius, V., Margenov, S., Kriauzienė, R.: Parallel solvers for fractional power diffusion problems. Concurr. Comput.: Pract. Exp. 25(24) (2017).
  9. 9.
    Falgout, R.D., Yang, U.M.: Hypre: a library of high performance preconditioners. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2331, pp. 632–641. Springer, Heidelberg (2002). CrossRefGoogle Scholar
  10. 10.
    Falgout, R., Jones, J., Yang, U.: The design and implementation of hypre, a library of parallel high performance preconditioners. In: Bruaset, A.M., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers. LNCSE, pp. 267–294. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  11. 11.
    Čiegis, R., Starikovičius, V., Tumanova, N., Ragulskis, M.: Application of distributed parallel computing for dynamic visual cryptography. J. Supercomput. 72(11), 4204–4220 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Raimondas Čiegis
    • 1
    Email author
  • Vadimas Starikovičius
    • 1
  • Svetozar Margenov
    • 2
  • Rima Kriauzienė
    • 1
    • 3
  1. 1.Vilnius Gediminas Technical UniversityVilniusLithuania
  2. 2.Institute of Information and Communication TechnologiesBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Vilnius University Institute of Mathematics and InformaticsVilniusLithuania

Personalised recommendations