Comparison of Parallel Time-Periodic Navier-Stokes Solvers

  • Peter ArbenzEmail author
  • Daniel Hupp
  • Dominik Obrist
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10777)


In this paper we compare two different methods to compute time-periodic steady states of the Navier-Stokes equations. The first one is a traditional time-stepping scheme which has to be evolved until the state is reached. The second one uses periodic boundary conditions in time and uses a spectral discretization in time. The methods are compared with regard to accuracy and scalability by solving for a time-periodic Taylor-Green vortex. We show that the time-periodic steady state can be computed much faster with the spectral in time method than with the standard time-stepping method if the Womersley number is sufficiently large.


Parallel-in-time Time-periodic Navier-Stokes equations Taylor-Green vortex 



The work of D. Hupp was supported in part by Grant No. 200021_147052 of the Swiss National Science Foundation.


  1. 1.
    Henniger, R., Obrist, D., Kleiser, L.: High-order accurate solution of the incompressible Navier-Stokes equations on massively parallel computers. J. Comput. Phys. 229(10), 3543–3572 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbenz, P., Hiltebrand, A., Obrist, D.: A parallel space-time finite difference solver for periodic solutions of the Shallow-Water equation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7204, pp. 302–312. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  3. 3.
    Benedusi, P., Hupp, D., Arbenz, P., Krause, R.: A parallel multigrid solver for time-periodic incompressible Navier-Stokes equations in 3D. In: Karasözen, B., Manguoğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2015. LNCSE, vol. 112, pp. 265–273. Springer, Cham (2016). CrossRefGoogle Scholar
  4. 4.
    Hupp, D., Obrist, D., Arbenz, P.: Multigrid preconditioning for time-periodic Navier-Stokes problems. PAMM 15(1), 595–596 (2015)CrossRefGoogle Scholar
  5. 5.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Elman, H., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block preconditioners based on approximate commutators. SIAM J. Sci. Comput. 27(5), 1651–1668 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bavier, E., Hoemmen, M., Rajamanickam, S., Thornquist, H.: Amesos2 and Belos: direct and iterative solvers for large sparse linear systems. Sci. Program. 20(3), 241–255 (2012)Google Scholar
  8. 8.
    Hupp, D., Arbenz, P., Obrist, D.: A parallel Navier-Stokes solver using spectral discretisation in time. Int. J. Comput. Fluid Dyn. 30(7–10), 489–494 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. Ser. A 158(895), 499–521 (1937)CrossRefzbMATHGoogle Scholar
  10. 10.
    van Rees, W.M., Leonard, A., Pullin, D.I., Koumoutsakos, P.: A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers. J. Comput. Phys. 230(8), 2794–2805 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers, 2nd edn. Oxford University Press, Oxford (2014)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science DepartmentETH ZürichZürichSwitzerland
  2. 2.ARTORG CenterUniversity of BernBernSwitzerland

Personalised recommendations