D-Spline Performance Tuning Method Flexibly Responsive to Execution Time Perturbation

  • Guning FanEmail author
  • Masayoshi Mochizuki
  • Akihiro Fujii
  • Teruo Tanaka
  • Takahiro Katagiri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10777)


Various software automatic tuning methods have been proposed to search for the optimum parameter setting from among a combination of performance parameters. We have been studying a discrete spline (d-Spline)-based incremental performance parameter estimation (IPPE) method that does not require the approximation function to have differential continuity. In this method, a d-Spline generated from the minimum sample point is used to estimate the optimum value of the performance parameter. In prior methods, one measurement result was used to conduct sample point estimation; however, perturbations arising from the computing environment can affect estimates made in this manner. Such perturbations include disturbances introduced by the computing environment and OS jitters. In this study, we propose a method that considers execution time perturbation in performance parameter estimation by allowing for re-measurement under certain conditions by using an actual IPPE measurement. This lowers the inclusion of execution time perturbation in d-Spline approximation, thus enhancing the reliability of software automatic tuning.


Automatic tuning Parameter estimation Perturbation 



This study was partially supported by JSPS KAKENHI Grant Number JP 16H02823,15H02708, and JSPS, Open Partnership Joint Research Projects/Seminars, “Deepening Performance Models for Automatic Tuning with International Collaboration.”


  1. 1.
    Clint Whaley, R., Petitet, A., Dongarra, J.J.: Automated empirical optimization of software and ATLAS project. Parallel Comput. 27, 3–35 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Suda, R.: A Bayesian method of online automatic tuning. In: Naono, K., Teranishi, K., Cavazos, J., Suda, R. (eds.) Software Automatic Tuning, pp. 275–293. Springer, New York (2011). CrossRefGoogle Scholar
  3. 3.
    Chen, J., Che, R., Fujii, A., Suda, R., Wang, W.: Timing performance surrogates in auto-tuning for qualitative and quantitative factors. In: SIAM Conference on Parallel Processing and Scientific Computing, PP 2014 (2014)Google Scholar
  4. 4.
    Katagiri, T., Ito, S., Ohshima, S.: Early experiences for adaptation of auto-tuning by ppOpen-AT to an explicit method. In: Proceedings of MCSoC 2013, pp. 153–158 (2013)Google Scholar
  5. 5.
    Mochizuki, M., Fujii, A., Tanaka, T.: Fast multidimensional performance parameter estimation with multiple one-dimensional d-Spline parameter search. In: iWAPT (2017)Google Scholar
  6. 6.
    Katagiri, T., Ohshima, S., Matsumoto, M.: Auto-tuning of computation kernels from an FDM code with ppOpen-AT. In: Proceedings of MCSoC 2014, pp. 91–98 (2014)Google Scholar
  7. 7.
    ppOpen-HPC Project. Accessed 15 Feb 2017
  8. 8.
    Murata, R., Irie, J., Fujii, A., Tanaka, T., Katagiri, T.: Enhancement of incremental performance parameter estimation on ppOpen-AT. In: Proceedings of MCSoC 2015, pp. 203–210 (2015)Google Scholar
  9. 9.
    Tanaka, T., Katagiri, T., Yuba, T.: d-Spline based incremental parameter estimation in automatic performance tuning. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 986–995. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  10. 10.
    Tanaka, T., Otsuka, R., Fujii, A., Katagiri, T., Imamura, T.: Implementation of d-Spline-based incremental performance parameter estimation method with ppOpen-AT. Sci. Program. 22, 299–307 (2014)Google Scholar
  11. 11.
    Vanek, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Technical report UCD-CCM-036 (1995)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Guning Fan
    • 1
    Email author
  • Masayoshi Mochizuki
    • 1
  • Akihiro Fujii
    • 1
  • Teruo Tanaka
    • 1
  • Takahiro Katagiri
    • 2
  1. 1.Kogakuin UniversityTokyoJapan
  2. 2.Nagoya UniversityAichiJapan

Personalised recommendations