Skip to main content

Prediction of the Inter-Node Communication Costs of a New Gyrokinetic Code with Toroidal Domain

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2017)

Abstract

We consider the communication costs of gyrokinetic plasma physics simulations running at large scale. For this we apply virtual decompositions of the toroidal domain in three dimensions and additional domain cloning to existing simulations done with the ORB5 code. The communication volume and the number of communication partners per timestep for every virtual task (node) are evaluated for the particles and the structured mesh. Thus the scaling properties of a code with the new domain decompositions are derived for simple models of a modern computer network and corresponding processing units. The effectiveness of the suggested decomposition has been shown. For a typical simulation with \(2\cdot 10^9\) particles and a mesh of \(256\times 1024\times 512\) grid points scaling to 2, 800 nodes should be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, M.F., Ku, S.H., Worley, P., D’Azevedo, E., Cummings, J.C., Chang, C.S.: Scaling to 150K cores: recent algorithm and performance engineering developments enabling XGC1 to run at scale. In: Journal of Physics: Conference Series, vol. 180, p. 012036. IOP Publishing (2009). https://doi.org/10.1088/1742-6596/180/1/012036

  2. Bruck, J., Ho, C.T., Kipnis, S., Upfal, E., Weathersby, D.: Efficient algorithms for all-to-all communications in multiport message-passing systems. IEEE Trans. Parallel Distrib. 8(11), 1143–1156 (1997). https://doi.org/10.1109/71.642949

    Article  Google Scholar 

  3. Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm, U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839 (2010). https://doi.org/10.1109/TPS.2010.2064310

    Article  Google Scholar 

  4. Chen, G., Chacón, L., Barnes, D.C.: An efficient mixed-precision, hybrid CPU-GPU implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm. J. Comput. Phys. 231(16), 5374–5388 (2012). https://doi.org/10.1016/j.jcp.2012.04.040

    Article  MathSciNet  Google Scholar 

  5. Decyk, V.K.: Skeleton particle-in-cell codes on emerging computer architectures. Comput. Sci. Eng. 17(2), 47–52 (2015). https://doi.org/10.1109/MCSE.2014.131

    Article  Google Scholar 

  6. Ethier, S., Tang, W.M., Lin, Z.: Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced computing platforms. In: Journal of Physics: Conference Series, vol. 16, p. 1. IOP Publishing (2005). https://doi.org/10.1088/1742-6596/16/1/001

  7. Hariri, F., Tran, T.M., Jocksch, A., Lanti, E., Progsch, J., Messmer, P., Brunner, S., Gheller, C., Villard, L.: A portable platform for accelerated PIC codes and its application to GPUs using OpenACC. Comput. Phys. Commun. 207, 69–82 (2016). https://doi.org/10.1016/j.cpc.2016.05.008

    Article  Google Scholar 

  8. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press, Cambridge (1988)

    Book  MATH  Google Scholar 

  9. Ishiguro, S.: Large scale Particle-In-Cell plasma simulation. In: Resch, M., Roller, S., Benkert, K., Galle, M., Bez, W., Kobayashi, H., Hirayama, T. (eds.) High Performance Computing on Vector Systems, pp. 139–144. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-85869-0_13

    Google Scholar 

  10. Jolliet, S., Bottino, A., Angelino, P., Hatzky, R., Tran, T.M., McMillan, B.F., Sauter, O., Appert, K., Idomura, Y., Villard, L.: A global collisionless PIC code in magnetic coordinates. Comput. Phys. Commun. 177(5), 409–425 (2007). https://doi.org/10.1016/j.cpc.2007.04.006

    Article  Google Scholar 

  11. McMillan, B.F., Jolliet, S., Bottino, A., Angelino, P., Tran, T.M., Villard, L.: Rapid Fourier space solution of linear partial integro-differential equations in toroidal magnetic confinement geometries. Comput. Phys. Commun. 181(4), 715–719 (2010). https://doi.org/10.1016/j.cpc.2009.12.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Naitou, H., Hashimoto, H., Yamada, Y., Tokuda, S., Yagi, M.: Parallelization of gyrokinetic PIC code for MHD simulation. Progress in Nuclear Science and Technology 2, 657–662 (2011). https://doi.org/10.15669/pnst.2.657

    Article  Google Scholar 

  13. Ohana, N., Jocksch, A., Lanti, E., Tran, T.M., Brunner, S., Gheller, C., Hariri, F., Villard, L.: Towards the optimization of a gyrokinetic Particle-In-Cell (PIC) code on large-scale hybrid architectures. In: Journal of Physics: Conference Series, vol. 775, p. 012010. IOP Publishing (2016). https://doi.org/10.1088/1742-6596/775/1/012010

  14. Wang, B., Ethier, S., Tang, W., Ibrahim, K., Madduri, K., Williams, S., Oliker, L.: Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers. Int. J. High Perform. Comput. Appl. (2017). https://doi.org/10.1177/1094342017712059

  15. Wei, Y., Wang, Y., Cai, L., Tang, W., Wang, B., Ethier, S., See, S., Lin, J.: Performance and portability studies with OpenACC accelerated version of GTC-P. In: 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT) (2016). https://doi.org/10.1109/PDCAT.2016.019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Jocksch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jocksch, A. et al. (2018). Prediction of the Inter-Node Communication Costs of a New Gyrokinetic Code with Toroidal Domain. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10777. Springer, Cham. https://doi.org/10.1007/978-3-319-78024-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78024-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78023-8

  • Online ISBN: 978-3-319-78024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics