Advertisement

Two Parallelization Schemes for the Induction of Nondeterministic Finite Automata on PCs

  • Tomasz JastrzabEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10777)

Abstract

In the paper we study the induction of minimal nondeterministic finite automata consistent with the sets of examples and counterexamples. The induced automata are minimal with respect to the number of states. We devise a generic parallel induction algorithm and two original parallelization schemes. The schemes take into account the possibility of solving the induction task on a PC with a multi-core processor. We consider theoretically different possible configurations of the parallelization schemes. We also provide some experimental results obtained for selected configurations.

Keywords

Parallel algorithm Nondeterministic finite automaton Grammatical inference 

Notes

Acknowledgment

The research was supported by National Science Centre Poland (NCN), project registration no. 2016/21/B/ST6/02158 and research grant BKM 2016 at the Silesian University of Technology. Calculations were also carried out using the computer cluster Ziemowit (http://www.ziemowit.hpc.polsl.pl) funded by the Silesian BIO-FARMA project No. POIG.02.01.00-00-166/08 in the Computational Biology and Bioinformatics Laboratory of the Biotechnology Centre in the Silesian University of Technology.

References

  1. 1.
    Alvarez, G., Ruiz, J., Cano, A., García, P.: Nondeterministic regular positive negative inference NRPNI. In: Proceedings of the XXXI Latin American Informatics Conference (CLEI 2005), pp. 239–249 (2005)Google Scholar
  2. 2.
    Dechter, R., Meiri, I.: Experimental evaluation of preprocessing algorithms for constraint satisfaction problems. Artif. Intell. 68, 211–241 (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSAs. Theoret. Comput. Sci. 313(2), 267–294 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dijkstra, E., Seijen, W., van Gasteren, A.: Derivation of a termination detection algorithm for distributed computations. Inf. Process. Lett. 16(5), 217–219 (1983)MathSciNetCrossRefGoogle Scholar
  5. 5.
    García, P., Vázquez de Parga, M., Alvarez, G., Ruiz, J.: Universal automata and NFA learning. Theor. Comput. Sci. 407(1–3), 192–202 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Harallick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313 (1980)CrossRefGoogle Scholar
  7. 7.
    Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company, Boston (1979)zbMATHGoogle Scholar
  8. 8.
    Jastrzab, T.: On parallel induction of nondeterministic finite automata. Proc. Comput. Sci. 80, 257–268 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jastrzab, T., Czech, Z.J., Wieczorek, W.: Parallel induction of nondeterministic finite automata. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 248–257. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-32149-3_24 CrossRefGoogle Scholar
  10. 10.
    Tomita, M.: Dynamic construction of finite automata from examples using hill-climbing. In: Proceedings of the 4th Annual Conference of the Cognitive Science Society, pp. 105–108 (1982)Google Scholar
  11. 11.
    de Parga, M.V., García, P., Ruiz, J.: A family of algorithms for non deterministic regular languages inference. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 265–274. Springer, Heidelberg (2006).  https://doi.org/10.1007/11812128_25 CrossRefGoogle Scholar
  12. 12.
    Wieczorek, W.: Induction of non-deterministic finite automata on supercomputers. In: Proceedings of the 11th International Conference on Grammatical Inference (ICGI 2012), JMLR Workshop and Conference Proceedings, vol. 21, pp. 237–242 (2012)Google Scholar
  13. 13.
    Wieczorek, W.: Grammatical Inference: Algorithms, Routines and Applications. SCI, vol. 673. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-46801-3 zbMATHGoogle Scholar
  14. 14.
    Wieczorek, W., Unold, O.: Induction of directed acyclic word graph in a bioinformatics task. In: Proceedings of the 12th International Conference on Grammatical Inference (ICGI 2014), JMLR Workshop and Conference Proceedings, vol. 34, pp. 207–217 (2014)Google Scholar
  15. 15.
    Wieczorek, W., Unold, O.: Use of a novel grammatical inference approach in classification of amyloidogenic hexapeptides. Comput. Math. Methods Med. 2016, Article ID 1782732 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations