Advertisement

Two-Echelon System Stochastic Optimization with R and CUDA

  • Witold Andrzejewski
  • Maciej DrozdowskiEmail author
  • Gang Mu
  • Yong Chao Sun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10777)

Abstract

Parallelizing of the supply chain simulator is considered in this paper. The simulator is a key element of the algorithm optimizing inventory levels and order sizes in a two-echelon logistic system. The mode of operation of the logistic system and the optimization problem are defined first. Then, the inventory optimization algorithm is introduced. Parallelization for CUDA platform is presented. Benchmarking of the parallelized code demonstrates high efficiency of the software hybrid.

Keywords

Two-echelon problem Simulation-based optimization CUDA 

References

  1. 1.
    Chu, Y., You, F., Wassick, J.M., Agarwal, A.: Simulation-based optimization framework for multi-echelon inventory systems under uncertainty. Comput. Chem. Eng. 73, 1–16 (2015).  https://doi.org/10.1016/j.compchemeng.2014.10.008 CrossRefGoogle Scholar
  2. 2.
    Cuda, R., Guastaroba, G., Speranza, M.G.: A survey on two-echelon routing problems. Comput. Oper. Res. 55, 185–199 (2015).  https://doi.org/10.1016/j.cor.2014.06.008 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Groemping, U.: Fractional Factorial Designs with 2-Level Factors (2016). https://cran.r-project.org/web/packages/FrF2/FrF2.pdf
  4. 4.
    Hillier, F.S., Lieberman, G.J.: Introduction to Stochastic Models in Operations Research. McGraw-Hill Publishing Company, New York (1990)zbMATHGoogle Scholar
  5. 5.
    Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation and Modeling. Wiley, New York (1991)zbMATHGoogle Scholar
  6. 6.
    Makhorin, A.: GLPK (GNU Linear Programming Kit) (2012). http://www.gnu.org/software/glpk/
  7. 7.
    Martin, P.J., Ayuso, L.F., Torres, R., Gavilanes, A.: Algorithmic strategies for optimizing the parallel reduction primitive in CUDA. In: Smari, W.W., Zeljkovic, V. (eds), HPCS, pp. 511–519. IEEE (2012).  https://doi.org/10.1109/HPCSim.2012.6266966
  8. 8.
    NVIDIA CUDA Programming Guide (2016). http://docs.nvidia.com/cuda/cuda-c-programming-guide/
  9. 9.
    Theussl, S., Hornik, K., Buchta, C., Schuchardt, H.: R/GNU Linear Programming Kit Interface (2016). https://cran.r-project.org/web/packages/Rglpk/Rglpk.pdf

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Computing SciencePoznań University of TechnologyPoznańPoland
  2. 2.School of Mathematical SciencesTongji UniversityShanghaiChina
  3. 3.F. Hoffmann-La Roche AGBaselSwitzerland

Personalised recommendations