Advertisement

Algorithms for Forward and Backward Solution of the Fokker-Planck Equation in the Heliospheric Transport of Cosmic Rays

  • Anna WawrzynczakEmail author
  • Renata Modzelewska
  • Agnieszka Gil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10777)

Abstract

Motion of charged particles in an inhomogeneous turbulent medium as magnetic field is described by partial differential equations of the Fokker-Planck-Kolmogorov type. We present an algorithm of numerical solution of the four-dimensional Fokker-Planck equation in three-dimensional spherical coordinates system. The algorithm is based on Monte Carlo simulations of the stochastic motion of quasi-particles guided by the set of stochastic differential equations corresponding to the Fokker-Planck equation by the Ito formalism. We present the parallel algorithm in Julia programming language. We simulate the transport of cosmic rays in the heliosphere considering the full three-dimensional diffusion tensor. We compare forward- and backward-in-time solutions of the transport equation and discuss its computational advantages and disadvantages.

Keywords

Numerical algorithms Fokker-Planck equation Stochastic differential equations Cosmic ray transport Julia parallel programming 

Notes

Acknowledgments

This work is supported by The Polish National Science Centre grant awarded by decision number DEC-2012/07/D/ST6/02488. Calculations were performed at the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) at Warsaw University within the computational grant no. G66-19.

References

  1. 1.
    Fokker, D.: Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys. 348, 810–820 (1914)CrossRefGoogle Scholar
  2. 2.
    Planck, M.: An essay on statistical dynamics and its amplification in the quantum theory. Sitzber. Preuss. Akad. Wiss. 325, 324 (1917)Google Scholar
  3. 3.
    Parker, E.: The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9–49 (1965)CrossRefGoogle Scholar
  4. 4.
    Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gardiner, C.W.: Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer Series in Synergetics. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  6. 6.
    Moraal, H.: Cosmic-ray modulation equations. Space Sci. Rev. 176, 299–319 (2013)CrossRefGoogle Scholar
  7. 7.
    Gervasi, M., Rancoita, P.G., Usoskin, I.G., Kovaltsov, G.A.: Monte-Carlo approach to galactic cosmic ray propagation in the heliosphere. Nucl. Phys. B (Proc. Suppl.) 78, 26–31 (1999)CrossRefGoogle Scholar
  8. 8.
    Alania, M.V.: Stochastic variations of galactic cosmic rays. Acta Physica Pol. B 33(4), 1149–1166 (2002)Google Scholar
  9. 9.
    Zhang, M.: A markov stochastic process theory of cosmic-ray modulation. Astrophys. J. 513, 409–420 (1999)CrossRefGoogle Scholar
  10. 10.
    Pei, C., Bieber, J.W., Burger, R.A., Clem, J.: A general time-dependent stochastic method for solving Parker’s transport equation in spherical coordinates. J. Geophys. Res. 115, A12107 (2010)Google Scholar
  11. 11.
    Vos, E., Potgieter, M.S.: New modeling of galactic proton modulation during the minimum of solar cycle 23/24. Astrophys. J., 815, article id. 119, 8 pp. (2015)Google Scholar
  12. 12.
    Bobik, P., Boschini, M.J., Della Torre, S., et al.: On the forward-backward-in-time approach for Monte Carlo solution of Parker’s transport equation: one-dimensional case. J. Geophys. Res. Space Phys. 121, 3920–3930 (2016)CrossRefGoogle Scholar
  13. 13.
    Kopp, A., Busching, I., Strauss, R.D., Potgieter, M.S.: A stochastic differential equation code for multidimensional Fokker-Planck type problems. Comput. Phys. Commun. 183, 530–542 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wawrzynczak, A., Modzelewska, R., Gil, A.: Stochastic approach to the numerical solution of the non-stationary Parker’s transport equation. J. Phys. Conf. Ser. 574, 012078 (2015)CrossRefGoogle Scholar
  15. 15.
    Kloeden, P.E., Platen, E., Schurz, H.: Numerical Solution of SDE Through Computer Experiments. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-642-57913-4 zbMATHGoogle Scholar
  16. 16.
  17. 17.
    Wawrzynczak, A., Modzelewska, R., Kluczek, M.: Numerical methods for solution of the stochastic differential equations equivalent to the non-stationary Parkers transport equation. J. Phys. Conf. Ser. 633, 012058 (2015)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Wawrzynczak, A., Modzelewska, R., Gil, A.: A stochastic method of solution of the Parker transport equation. J. Phys. Conf. Ser. 632, 1742–6596 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anna Wawrzynczak
    • 1
    Email author
  • Renata Modzelewska
    • 2
  • Agnieszka Gil
    • 2
  1. 1.Institute of Computer SciencesSiedlce UniversitySiedlcePoland
  2. 2.Institute of Mathematics and PhysicsSiedlce UniversitySiedlcePoland

Personalised recommendations