Load Balancing for Particle-in-Cell Plasma Simulation on Multicore Systems

  • Anton Larin
  • Sergey Bastrakov
  • Aleksei Bashinov
  • Evgeny Efimenko
  • Igor Surmin
  • Arkady Gonoskov
  • Iosif MeyerovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10777)


Particle-in-cell plasma simulation is an important area of computational physics. The particle-in-cell method naturally allows parallel processing on distributed and shared memory. In this paper we address the problem of load balancing on multicore systems. While being well-studied for many traditional applications of the method, it is a relevant problem for the emerging area of particle-in-cell simulations with account for effects of quantum electrodynamics. Such simulations typically produce highly non-uniform, and sometimes volatile, particle distributions, which could require custom load balancing schemes. In this paper we present a computational evaluation of several standard and custom load balancing schemes for the particle-in-cell method on a high-end system with 96 cores on shared memory. We use a test problem with static non-uniform particle distribution and a real problem with account for quantum electrodynamics effects, which produce dynamically changing highly non-uniform distributions of particles and workload. For these problems the custom schemes result in increase of scaling efficiency by up to 20% compared to the standard OpenMP schemes.


Parallel processing Load balancing OpenMP Particle-in-cell Plasma simulation Quantum electrodynamics 



The authors (A.L., S.B., A.B., E.E., A.G.) acknowledge the support from the Russian Science Foundation project No. 16-12-10486. We are grateful to Intel Corporation for access to the system used for performing computational experiments presented in this paper. The authors are also grateful to A. Bobyr, S. Egorov, I. Lopatin, and Z. Matveev from Intel Corporation for technical consultations.


  1. 1.
    Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15(5), 055703 (2008)CrossRefGoogle Scholar
  2. 2.
    Vay, J.-L., Bruhwiler, D.L., Geddes, C.G.R., Fawley, W.M., Martins, S.F., Cary, J.R., Cormier-Michel, E., Cowan, B., Fonseca, R.A., Furman, M.A., Lu, W., Mori, W.B., Silva, L.O.: Simulating relativistic beam and plasma systems using an optimal boosted frame. J. Phys: Conf. Ser. 180(1), 012006 (2009)Google Scholar
  3. 3.
    Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm, U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839 (2010)CrossRefGoogle Scholar
  4. 4.
    Surmin, I.A., Bastrakov, S.I., Efimenko, E.S., Gonoskov, A.A., Korzhimanov, A.V., Meyerov, I.B.: Particle-in-cell laser-plasma simulation on Xeon Phi coprocessors. Comput. Phys. Commun. 202, 204–210 (2016)CrossRefGoogle Scholar
  5. 5.
    Fonseca, R.A., Vieira, J., Fiuza, F., Davidson, A., Tsung, F.S., Mori, W.B., Silva, L.O.: Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Control. Fusion. 55(12), 124011 (2013)CrossRefGoogle Scholar
  6. 6.
    Decyk, V.K., Singh, T.V.: Particle-in-cell algorithms for emerging computer architectures. Comput. Phys. Commun. 185(3), 708–719 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Plimpton, S.J., Seidel, D.B., Pasik, M.F., Coats, R.S., Montry, G.R.: A load-balancing algorithm for a parallel electromagnetic particle-in-cell code. Comput. Phys. Commun. 152, 227–241 (2003)CrossRefGoogle Scholar
  8. 8.
    Nakashima, H., Miyake, Y., Usui, H., Omura, Y.: OhHelp: a scalable domain-decomposing dynamic load balancing for particle-in-cell simulations. In: 23rd International Conference on Supercomputing, pp. 90–99. ACM, New York (2009)Google Scholar
  9. 9.
    Vay, J.-L., Haber, I., Godfrey, B.B.: A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas. J. Comput. Phys. 243(15), 260–268 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Surmin, I., Bashinov, A., Bastrakov, S., Efimenko, E., Gonoskov, A., Meyerov, I.: Dynamic load balancing based on rectilinear partitioning in particle-in-cell plasma simulation. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 107–119. Springer, Cham (2015). CrossRefGoogle Scholar
  11. 11.
    Germaschewski, K., Fox, W., Abbott, S., Ahmadi, N., Maynard, K., Wang, L., Ruhl, H., Bhattacharjee, A.: The plasma simulation code: a modern particle-in-cell code with patch-based load-balancing. J. Comput. Phys. 318(1), 305–326 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. Future Gener. Comput. Syst. 17, 755–765 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Beck, A., Frederiksen, J.T., Derouillat, J.: Load management strategy for Particle-In-Cell simulations in high energy physics. Nucl. Instrum. Methods Phys. Res. A 829(1), 418–421 (2016)CrossRefGoogle Scholar
  14. 14.
    Nerush, E.N., Kostyukov, I.Y., Fedotov, A.M., Narozhny, N.B., Elkina, N.V., Ruhl, H.: Laser field absorption in self-generated electron-positron pair plasma. Phys. Rev. Lett. 106, 035001 (2011)CrossRefGoogle Scholar
  15. 15.
    Ridgers, C.P., Kirk, J.G., Duclous, R., Blackburn, T.G., Brady, C.S., Bennett, K., Arber, T.D., Bell, A.R., et al.: Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions. J. Comput. Phys. 260, 273–285 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A., Surmin, I., Wallin, E.: Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305 (2015)CrossRefGoogle Scholar
  17. 17.
    Dawson, J.M.: Particle simulation of plasmas. Rev. Mod. Phys. 55(2), 403–447 (1983)CrossRefGoogle Scholar
  18. 18.
    Baier, V.N., Katkov, V.M., Strakhovenko, V.M.: Electromagnetic Processes at High Energies in Oriented Single Crystals. World Scientific, Singapore (1998)CrossRefGoogle Scholar
  19. 19.
    Bell, A.R., Kirk, J.G.: Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101, 200403 (2008)CrossRefGoogle Scholar
  20. 20.
    Gonoskov, A., Bashinov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Kim, A., Marklund, M., Meyerov, I., Muraviev, A., Sergeev, A.: Ultra-bright GeV photon source via controlled electromagnetic cascades in laser-dipole waves. Phys. Rev. X. 7, 041003 (2017)Google Scholar
  21. 21.
    Vranic, M., Grismayer, T., Fonseca, R.A., Silva, L.O.: Electron-positron cascades in multiple-laser optical traps. Plasma Phys. Control. Fusion 59, 014040 (2016)CrossRefGoogle Scholar
  22. 22.
    Bulanov, S.S., Mur, V.D., Narozhny, N.B., Nees, J., Popov, V.S.: Multiple colliding electromagnetic pulses: a way to lower the threshold of \(e^+e^-\) pair production from vacuum. Phys. Rev. Lett. 104(22), 220404 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anton Larin
    • 1
    • 2
  • Sergey Bastrakov
    • 1
  • Aleksei Bashinov
    • 2
  • Evgeny Efimenko
    • 2
  • Igor Surmin
    • 1
  • Arkady Gonoskov
    • 1
    • 2
    • 3
  • Iosif Meyerov
    • 1
    Email author
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia
  2. 2.Institute of Applied PhysicsRussian Academy of SciencesNizhni NovgorodRussia
  3. 3.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations