Advertisement

Fast DEM Collision Checks on Multicore Nodes

  • Konstantinos Krestenitis
  • Tobias WeinzierlEmail author
  • Tomasz Koziara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10777)

Abstract

Many particle simulations today rely on spherical or analytical particle shape descriptions. They find non-spherical, triangulated particle models computationally infeasible due to expensive collision detections. We propose a hybrid collision detection algorithm based upon an iterative solve of a minimisation problem that automatically falls back to a brute-force comparison-based algorithm variant if the problem is ill-posed. Such a hybrid can exploit the vector facilities of modern chips and it is well-prepared for the arising manycore era. Our approach pushes the boundary where non-analytical particle shapes and the aligning of more accurate first principle physics become manageable.

Keywords

Discrete element method Collision detection Vectorisation Shared memory parallelisation 

References

  1. 1.
    Boac, J.M., Ambrose, R.P.K., Casada, M.E., Maghirang, R.G., Maier, D.E.: Applications of discrete element method in modeling of grain postharvest operations. Food Eng. Rev. 6, 128–149 (2014)CrossRefGoogle Scholar
  2. 2.
    Chapman, B., LaGrone, J.: OpenMP, pp. 1365–1371. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-09766-4_50 Google Scholar
  3. 3.
    Cundall, P., Strack, O.: Discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRefGoogle Scholar
  4. 4.
    Griebel, M., Knapek, S., Zumbusch, G.: Numerical Simulation in Molecular Dynamics. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-68095-6 zbMATHGoogle Scholar
  5. 5.
    Iglberger, K., Rüde, U.: Massively parallel granular flow simulations with non-spherical particles. Comput. Sci. - Res. Dev. 25, 105–113 (2010)CrossRefGoogle Scholar
  6. 6.
    Johnson, J.B., Kulchitsky, A.V., Duvoy, P., Iagnemma, K., Senatore, C., Arvidson, R.E., Moore, J.: Discrete element method simulations of Mars Exploration Rover wheel performance. J. Terramech. 62, 31–40 (2015)CrossRefGoogle Scholar
  7. 7.
    Li, T.-Y., Chen, J.-S.: Incremental 3D collision detection with hierarchical data structures. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology 1998 - VRST 1998, pp. 139–144 (1998)Google Scholar
  8. 8.
    McCalpin, J.D.: Memory bandwidth and machine balance in current high performance computers. In: IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, pp. 19–25 (1995)Google Scholar
  9. 9.
    Tian, X., Saito, H., Preis, S.V., Garcia, E.N., Kozhukhov, S.S., Masten, M., Cherkasov, A.G., Panchenko, N.: Effective SIMD Vectorization for Intel Xeon Phi Coprocessors, Scientific Programming, 2015 (2015)Google Scholar
  10. 10.
    Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweight performance-oriented tool suite for x86 multicore environments. In: Proceedings of the 2010 39th International Conference on Parallel Processing Workshops, ICPPW 2010, pp. 207–216. IEEE Computer Society (2010)Google Scholar
  11. 11.
    Weinzierl, T., Verleye, B., Henri, P., Roose, D.: Two particle-in-grid realisations on spacetrees. Parallel Comput. 52, 42–64 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Konstantinos Krestenitis
    • 1
  • Tobias Weinzierl
    • 1
    Email author
  • Tomasz Koziara
    • 2
  1. 1.Department of Computer ScienceDurham UniversityDurhamGreat Britain
  2. 2.Department of EngineeringDurham UniversityDurhamGreat Britain

Personalised recommendations