Skip to main content

Taking the Next Step in GaN: Bulk GaN Substrates and GaN-on-Si Epitaxy for Electronics

  • Chapter
  • First Online:
Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

One of the major factors in determining the quality of GaN technology is the epitaxial step. This chapter reviews two different approaches: the use of bulk GaN substrates and GaN-on-Si epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.zionmarketresearch.com/sample/led-lighting-market

  2. M. Asif Khan, J.N. Kuznia, D.T. Olson, Appl. Phys. Lett. 65(9), 1121–1123 (1994)

    Article  Google Scholar 

  3. D. Ehrentraut, E. Meissner, M. Bockowski (eds.), Technology of Gallium Nitride Crystal Growth (Springer, Heidelberg, 2010)

    Google Scholar 

  4. S. Porowski, B. Sadovyi, S. Gierlotka, S.J. Rzoska, I. Grzegory, I. Petrusha, V. Turkevich, D. Stratiichuk, The challenge of decomposition and melting of gallium nitride under high pressure and high temperature. J. Phys. Chem. Solid 85, 138–143 (2015)

    Article  Google Scholar 

  5. W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki, O. Shimomura, Congruent melting of gallium nitride at 6GPa and its application to single-crystal growth. Nat. Mater. 2, 735–738 (2003)

    Article  Google Scholar 

  6. J. Karpiński, J. Jun, S. Porowski, Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN. J. Cryst. Growth 66, 1–7 (1984)

    Article  Google Scholar 

  7. A.G. Sokol, Y.N. Palyanov, N.V. Surovtsev, Incongruent melting of gallium nitride at7.5GPa. Diam. Relat. Mater. 16, 431–434 (2007)

    Article  Google Scholar 

  8. K. Harafuji, T. Tsuchiya, K. Kawamura, Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal. J. Appl. Phys. 96, 2501–2512 (2004)

    Article  Google Scholar 

  9. I. Grzegory, High pressure growth of bulk GaN from solutions in gallium. J. Phys. Condens. Matter 13, 6875 (2001)

    Article  Google Scholar 

  10. J. Karpinski, S. Porowski, J. Cryst. Growth 66, 11 (1984)

    Article  Google Scholar 

  11. M. Bockowski, High nitrogen pressure solution growth of GaN. Jpn. J. Appl. Phys. 53, 100203 (2014)

    Article  Google Scholar 

  12. P. Rudolph (ed.), Bulk crystal growth, in Handbook of Crystal Growth, 2nd edn., (Elsevier Verlag., ISBN: 978-0-444-63303-3, 2015)

    Google Scholar 

  13. G. Sun, E. Meissner, P. Berwian, G. Müller, Application of a thermogravimetric technique for the determination of low nitrogen solubilities in metals: Using iron as an example. Thermochim. Acta 474(1–2), 36–40 (2008)

    Article  Google Scholar 

  14. D. Elwell, H.J. Scheel, The Growth of Crystals in Solution, Advances in Colloid and Interface Science, vol 10 (Academic Press, London/New York, 1979), pp. 215–252

    Google Scholar 

  15. S. Hussy, E. Meissner, J. Friedrich, Low-pressure solution growth (LPSG) of GaN templates with diameters up to 3 in. J. Cryst. Growth 310, 738–747 (2008)

    Article  Google Scholar 

  16. Y. Mori, M. Imade, M. Maruyama, M. Yoshimura, Growth of GaN crystals by Na flux method. ECS J. Solid State Sci. Technol 2(8), N3068–N3071 (2013)

    Article  Google Scholar 

  17. D. Ehrentraut, E. Meissner, A review on the Na-flux method toward growth of large-size GaN crystal, in Technology of GaN Crystal Growth, ed. by D. Ehrentraut, E. Meissner, M. Bockowski (Eds), (Springer Verlag, Heidelberg, 2010)

    Google Scholar 

  18. R. Doradziński, R. Dwiliński, J. Garczyński, L.P. Sierzputowski, Y. Kanbara, Ammonothermal growth of GaN under Ammono-basic conditions, in Technology of Gallium Nitride Crystal Growth, pp. 137–160

    Chapter  Google Scholar 

  19. D. Ehrentraut, Y. Kagamitani, T. Fukuda, F. Orito, S. Kawabata, K. Katano, S. Terada, Reviewing recent developments in the acid ammonothermal crystal growth of gallium nitride. J. Cryst. Growth 310, 3902–3906 (2008)

    Article  Google Scholar 

  20. M.P. D’Evelyn, D. Ehrentraut, W. Jiang, D.S. Kamber, B.C. Downey, R.T. Pakalapati, H.-D. Yoo Ammonothermal, Bulk GaN substrates for power electronics. ECS Trans. 58(4), 287–294 (2013)

    Article  Google Scholar 

  21. N.S. Alt, E. Meissner, et al., Development of a novel in situ monitoring technology for ammonothermal reactors. J. Cryst. Growth 350, 2–4 (2012)

    Article  Google Scholar 

  22. T.G. Steigerwald, N.S.A. Alt, B. Hertweck, E. Schluecker, Feasibility of density and viscosity measurements under ammonothermal conditions. J. Cryst. Growth 403, 59 (2014)

    Article  Google Scholar 

  23. S. Zhang, F. Hintze, W. Schnick, R. Niewa, Intermediates in Ammonothermal GaN crystal growth under Ammono-acidic conditions. Eur. J. Inorg. Chem. 32, 5387 (2013)

    Article  Google Scholar 

  24. S. Zhang, N.S.A. Alt, E. Schlücker, R. Niewa, Novel alkali metal Amidogallates as intermediates in Ammonothermal GaN crystal growth. J. Cryst. Growth 403, 22 (2014). https://doi.org/10.1016/j.jcrysgro.2014.06.015

    Article  Google Scholar 

  25. T.M.M. Richter, R. Niewa, Chemistry of Ammonothermal synthesis. Inorganics 2, 29 (2014). https://doi.org/10.3390/inorganics2010029

    Article  Google Scholar 

  26. R. Juza, H. Jacobs, H. Gerke, Ammonothermalsynthese von Metallamiden und Metallnitriden. Ber. Bunsenges. Phys. Chem. 70, 1103–1105 (1966)

    Google Scholar 

  27. H. Jacobs, H. Scholze, Untersuchung des Systems Na/LaNH3. Z. Anorg. Allg. Chem. 427, 8–16 (1976)

    Article  Google Scholar 

  28. U. Zachwieja, H. Jacobs, Synthesis of Bariumimide from the elements and orientational disorder of anions in BaND, studied by neutron diffraction from 8 K to 294 K. J. Less-Common Met 161, 175–184 (1990)

    Article  Google Scholar 

  29. U. Zachwieja u, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, CU3N. J. Less-Cemmen Met 161, 175–184 (1990)

    Article  Google Scholar 

  30. S. Kaskel, M. Khanna, B. Zibrowius, H.-W. Schmidt, D. Ullner, Crystal growth in supercritical ammonia using high surface area silicon nitride feedstock. J. Cryst. Growth 261, 99–104 (2004)

    Article  Google Scholar 

  31. H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSbN3, Eur. J. Solid state. Inorg. Chem. 30, 45–53 (1993)

    Google Scholar 

  32. H. Jacobs, R. Nymwegen, Darstellung und Kristallstruktur eines Kaliumnitridophosphats, K3P6N11. Z. Anorg. Allg. Chem. 623, 429–433 (1997)

    Article  Google Scholar 

  33. J. Hausler, L. Neudert, M. Mallmann, R. Niklaus, A.-C.L. Kimmel, S.A. Nicolas, E.S. Alt, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: Case study on CaGaSiN3. Chem. Eur. J. 23, 2583–2590 (2017)

    Article  Google Scholar 

  34. J. Hertrampf, N.S.A. Alt, E. Schlücker, R. Niewa, SrBa2(NH2)6: A new ternary amide from ammonothermal synthesis. Z. Kristallogr. Suppl 35, 80 (2015)

    Google Scholar 

  35. T. Yoshida, Y. Oshima, K. Watanabe, T. Tsuchiya, T. Mishima, Ultrahigh-speed growth of GaN by hydride vapor phase epitaxy. Phys. Status Solidi C 8(7–8), 2110 (2011)

    Article  Google Scholar 

  36. H.P. Maruska, J.J. Tietjen, The preparation and properties of vapor-deposited single-crystal GaN. Appl. Phys. Lett. 15(10), 327 (1969)

    Article  Google Scholar 

  37. T. Bohnen, H. Ashraf, G.W.G. van Dreumel, S. Verhagen, J.L. Weyher, P.R. Hageman, E. Vlieg, Enhanced growth rates and reduced parasitic deposition by the substitution of Cl2 for HCl in GaN HVPE. J. Cryst. Growth 312, 2542 (2010)

    Article  Google Scholar 

  38. K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, S. Nagao, Bulk GaN crystals grown by HVPE. J. Cryst. Growth 311, 3011 (2009)

    Article  Google Scholar 

  39. E. Richter, M. Gründer, C. Netzel, M. Weyers, G. Tränkle, Growth of GaN boules via vertical HVPE. J. Cryst. Growth 350, 89 (2012)

    Article  Google Scholar 

  40. F. Lipski, M. Klein, X. Yao, F. Scholz, Studies about wafer bow of freestanding GaN substrates grown by hydride vapor phase epitaxy. J. Cryst. Growth 352, 235 (2012)

    Article  Google Scholar 

  41. H. Aida, K. Koyama, D. Martin, K. Ikejiri, T. Aoyagi, M. Takeuchi, S.W. Kim, H. Takeda, N. Aota, N. Grandjean, Optical characteristics of InGaN/GaN light-emitting diodes depending on wafer bowing controlled by laser-treated grid patterns. Appl. Phys. Express 6, 035502 (2013)

    Article  Google Scholar 

  42. I. Grzegory, B. Łucznik, M. Boćkowski, B. Pastuszka, M. Kryśko, G. Kamler, G. Nowak, S. Porowski, Growth of bulk GaN by HVPE on pressure grown seeds. Proceedings of SPIE 6121, Gallium Nitride Materials and Devices,612107, 3 March 2006. https://doi.org/10.1117/12.645976

  43. B. Łucznik, B. Pastuszka, I. Grzegory, M. Boćkowski, G. Kamler, E. Litwin-Staszewska, S. Porowski, Deposition of thick GaN layers by HVPE on the pressure grown GaN substrates. J. Cryst. Growth 281, 38–46 (2005)

    Article  Google Scholar 

  44. H. Teisseyre, C. Skierbiszewski, B. Łucznik, G. Kamler, A. Feduniewicz, M. Siekacz, T. Suski, P. Perlin, I. Grzegory, S. Porowski, Free and bound excitons in GaN/AlGaN homoepitaxial quantum wells grown on bulk GaN substrate along the nonpolar (11-20) direction Appl. Phys. Lett. 86, 162112 (2005)

    Google Scholar 

  45. Y. Oshima, T. Yoshida, T. Eri, M. Shibata, T. Mishima, Thermal and electrical properties of high-quality freestanding GaN wafers with high carrier concentration. Jpn. J. Appl. Phys. 45, 7685 (2006)

    Article  Google Scholar 

  46. H. Fujikura et al., Hydride-vapor-phase epitaxial growth of highly pure GaN layers with smooth as-grown surfaces on freestanding GaN substrates. Jpn. J. Appl. Phys. 56, 085503 (2017)

    Article  Google Scholar 

  47. K. Yamane, T. Matsubara, T. Yamamoto, N. Okada, A. Wakahara, K. Tadatomo, Origin of lattice bowing of freestanding GaN substrates grown by hydride vapor phase epitaxy. J. Appl. Phys. 119, 045707 (2016)

    Article  Google Scholar 

  48. A. Krost, A. Dadgar, GaN-based devices on Si. Phys. Status Solidi A 194, 361–375., r (2002)

    Article  Google Scholar 

  49. J. Brown et al., Performance of AlGaN/GaN HFETs fabricated on 100 mm silicon substrates for wireless base station applications. Microwave Symposium Digest, 2004 IEEE MTT-S International, Fort Worth, 2004

    Google Scholar 

  50. K. Cheng et al., AlGaN/GaN high electron mobility transistors grown on 150 mm Si(111) substrates with high uniformity. Jpn. J. Appl. Phys. 47(3R), 1553 (2008)

    Article  Google Scholar 

  51. O. Ambacher et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222–3233 (1999)

    Article  Google Scholar 

  52. J. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd edn. (Academic Press, 1998.) ISBN-13), pp. 978–0126738421

    Google Scholar 

  53. https://www.aixtron.com/fileadmin/documents/Technologien/AIX_Broschuere_AIX_R6_low_DS.pdf

  54. https://www.aixtron.com/fileadmin/documents/Technologien/AIX_G5Plus_200mm_Low.pdf

  55. http://www.veeco.com/products/turbodisc-maxbright-m-gan-mocvd-system-for-led-production

  56. Y. Uemoto et al., Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation. Trans. Electr. Dev 54-12, 3393–3399 (2007)

    Article  Google Scholar 

  57. http://www.laytec.de/epiras/

  58. M.R. Leys et al., Growth of multiple thin layer structures in the GaAs-AlAs system using a novel VPE reactor. J. Cryst. Growth 68, 431 (1983)

    Article  Google Scholar 

  59. H. Ishikawa et al., Thermal stability of GaN on (111) Si substrate. J. Cryst. Growth 189–190, 178–182 (1998)

    Article  Google Scholar 

  60. A. Watanabe et al., The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer. J. Cryst. Growth 128, 391–396 (1993)

    Article  Google Scholar 

  61. D. Visalli et al., Experimental and simulation study of breakdown voltage enhancement of AlGaN/GaN heterostructures by Si substrate removal. Appl. Phys. Lett. 97, 113501 (2010)

    Article  Google Scholar 

  62. H. Yacoub et al., The effect of the inversion channel at the AlN/Si interface on the vertical breakdown characteristics of GaN-based devices. Semicond. Sci. Technol. 29, 115012 (2014)

    Article  Google Scholar 

  63. T.T. Luong et al., RF loss mechanisms in GaN-based high-electron-mobility-transistor on silicon: Role of an inversion channel at the AlN/Si interface. Phys. Status Solidi A 214, 1600944 (2017)

    Article  Google Scholar 

  64. H. Ishikawa et al., GaN on Si with AlGaN/GaN intermediate layer. Jpn. J. Appl. Phys 38, L492–L494 (1999)

    Article  Google Scholar 

  65. E. Feltin et al., Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 79, 3230 (2001)

    Article  Google Scholar 

  66. A. Ubukata et al., GaN growth on 150-mm-diameter (111) Si substrates. J. Cryst. Growth 298, 198–201 (2007)

    Article  Google Scholar 

  67. A. Reiher, Efficient stress relief in GaN heteroepitaxy on Si(111) using low-temperature AlN interlayers. J. Cryst. Growth 248, 563–567 (2003)

    Article  Google Scholar 

  68. J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974)

    Google Scholar 

  69. K. Cheng et al., AlN/GaN heterostructures grown by metal organic vapor phase epitaxy with in situ Si3N4 passivation. J. Cryst. Growth 315(1), 204–207 (2011)

    Article  Google Scholar 

  70. F. Medjdoub, Barrier-layer scaling of InAlN/GaN HEMTs. IEEE Electron Device Lett, 29–25 (2008)

    Google Scholar 

  71. J. Wurfl et al., Device breakdown and dynamic effects in GaN power switching devices: Dependencies on material properties and device design. ECS Trans. 50(3), 211–222 (2013)

    Article  MathSciNet  Google Scholar 

  72. T. Palacios et al., AlGaN/GaN high electron mobility transistors with InGaN back-barriers. IEEE Electron Device Lett, 27–21 (2005)

    Google Scholar 

  73. M. Uren et al., Intentionally carbon-doped AlGaN/GaN HEMTs: Necessity for vertical leakage paths. IEEE Electron Device Lett, 35–33 (2014)

    Google Scholar 

  74. J. Ibbetson et al., Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77, 250–252 (2000)

    Article  Google Scholar 

  75. T.R. Prunty, Passivation of AlGaN/GaN heterostructures with silicon nitride for insulated gate transistors. Proceedings of the 2000 IEEE/Cornell conference on high performance devices, Ithaca, 2000

    Google Scholar 

  76. J. Derluyn et al., Improvement of AlGaN/GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer. J. Appl. Phys. 98, 054501 (2005)

    Article  Google Scholar 

  77. M. Higashiwaki, Effects of SiN passivation by catalytic chemical vapor deposition on electrical properties of AlGaN∕GaN heterostructure field-effect transistors. J. Appl. Phys. 100, 033714 (2006)

    Article  Google Scholar 

  78. K. Cheng et al., Formation of V-grooves on the (al,Ga)N surface as means of tensile stress relaxation. J. Cryst. Growth 353, 88–94 (2012)

    Article  Google Scholar 

  79. F. Medjdoub, GaN-on-Si HEMTs Above 10 W/mm at 2 GHz together with high thermal stability at 325°C. Proceedings of the 5th European Microwave Integrated Circuits Conference, Paris, 27–28 Sept 2010

    Google Scholar 

  80. https://www.infineon.com/cms/en/product/promopages/gallium-nitride/

  81. http://gansystems.com/transistors.php

  82. S.L. Rumyantsev, M.S. Shur, M.E. Levinshtein, Materials properties of nitrides. Int. J. High Speed Electron Syst 14(1), 1 (2004)

    Article  Google Scholar 

  83. J.-H. Ryou, W. Lee, J. Limb, D. Yoo, J.P. Liu, R.D. Dupuis, Z.H. Wu, A.M. Fischer, F.A. Ponce, Control of quantum-confined stark effect in multiple quantum well active region by -type layer for III-nitride-based visible light emitting diodes. Appl. Phys. Lett. 92, 101113 (2008)

    Article  Google Scholar 

  84. M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre, P. BigenwaldM, Quantum confined stark effect due to built-in internal polarization fields in Al,Ga…N/GaN quantum wells. Phys. Rev. B 58(20) (1998)

    Article  Google Scholar 

  85. W. Udo, Pohl, Epitaxy of Semiconductors: Introduction to Physical Principles (Springer Science & Business Media, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Meissner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Derluyn, J., Germain, M., Meissner, E. (2018). Taking the Next Step in GaN: Bulk GaN Substrates and GaN-on-Si Epitaxy for Electronics. In: Meneghesso, G., Meneghini, M., Zanoni, E. (eds) Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion. Integrated Circuits and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-77994-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77994-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77993-5

  • Online ISBN: 978-3-319-77994-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics