Skip to main content

Magnetic Materials and Magnetization Process

  • Chapter
  • First Online:
  • 731 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 491))

Abstract

This chapter presents the description of materials from the point of view of their magnetic properties. Physical principles of mechanisms of magnetization of ferromagnetic magnetic materials, covering domain wall bending, domain wall movements and domains rotations are elaborated. Moreover, chapter presents the most useful models of magnetisation process, such as phenomenological models, Preisach model as well as Jiles-Atherton model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jaswal L, Singh B (2014) Ferrite materials: a chronological review. J Integr Sci Technol 2:69

    Google Scholar 

  2. Jiles DC (1998) Introduction to magnetism and magnetic materials. Chapman and Hall

    Google Scholar 

  3. Kittel C (2005) Introduction to solid state physics. Wiley

    Google Scholar 

  4. Bermudez A, Rodriguez R, Salgado P (2008) Numerical solution of 3D problems in terms of scalar potentials. In: Progress in industrial mathematics at ECMI 2006, Springer, p 833

    Chapter  Google Scholar 

  5. Blundell S (2003) Magnetism in condensed matter. Oxford University Press

    Article  Google Scholar 

  6. Tumański S (2011) Handbook of magnetic measurements. CRC

    Book  Google Scholar 

  7. O’Handley RC (2000) Modern magnetic materials—principles and applications Wiley

    Google Scholar 

  8. Gittleman JI, Abeles B, Bozowski S (1974) Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films. Phys Rev B 9:3891.

    Article  Google Scholar 

  9. Soft Magnetic Materials Market by Material Type (Soft Ferrite, Electrical Steel, Cobalt), Application (Motor, Transformer, Alternator), End User Industry (Automotive, Electronics & Telecommunications, Electrical)—Global Forecast to 2026”, Report CH 4731, http://www.marketsandmarkets.com/Market-Reports/soft-magnetic-material-market-206182334.html

  10. Moses AJ (1990) Electrical steels: past, present and future developments. IEE Proc A—Phys Sci, Meas Instrum, Manage and Educ 137:233

    Google Scholar 

  11. Grain oriented electrical steels (2016) AKSteels. www.aksteel.com

  12. Jackiewicz D, Szewczyk R, Salach J (2013) Mathematical and computer modelling of the influence of stress on magnetic characteristics of the construction steels. Theor Appl Inform 25:17

    Google Scholar 

  13. Jackiewicz D, Szewczyk R, Bienkowski A, Kachniarz M (2015) New methodology of testing the stress dependence of magnetic hysteresis loop of the L17HMF heat resistant steel casting. J Autom Mob Robo Intell Syst 9:52

    Google Scholar 

  14. Jiles DC, Thoelke JB (1989) Theory of ferromagnetic hysteresis: Determination of model parameters from experimental hysteresis loops. IEEE Trans Magn 25:3928

    Article  Google Scholar 

  15. Narasimham K, Hanejko F, Marucci M (2008) Growth opportunities with soft magnetic materials. Hoeganaes Corporation

    Google Scholar 

  16. Agrawal D (2006) Microwave sintering of ceramics, composites and metallic materials and melting of glasses. Trans Indian Ceram Soc 65:129

    Article  Google Scholar 

  17. Stoppels D (1996) Developments in soft magnetic power ferrites. J Magn Magn Mater 160:323

    Article  Google Scholar 

  18. Tumanski S (2010) Modern magnetic materials—the review. Electr Rev 4:1

    Google Scholar 

  19. Shen X, Gong R, Feng Z, Liu C (2008) Preparation, microstructure and magnetic properties of NiZn ferrite thin films by spin spray plating. J Wuhan Uni Technol 23:708

    Article  Google Scholar 

  20. Moyer JA, Gao R, Schiffer P, Martin LW (2015) Epitaxial growth of highly-crystalline spinel ferrite thin films on perovskite substrates for all-oxide devices. Nat—Sci Rep 5:10363.

    Google Scholar 

  21. Ramos AV, Guittet M-J, Moussy J-B, Mattana R, Deranlot C, Petroff F, Gatel C (2007) Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers. Appl Phys Lett 91:122107

    Article  Google Scholar 

  22. Lane PA, Wright PJ, Oliver PE, Reeves CL, Pitt AD, Keen JM, Ward MC, Tilsley ME, Smith NA, Cockayne B, Harris IR (1997) Growth of iron, nickel, and permalloy thin films by MOCVD for use in magnetoresistive sensors. Chem Vap Deposition 3:97

    Article  Google Scholar 

  23. Kitada M (1991) Magnetic properties of permalloy/permalloy-oxide multilayer thin films. J Mat Sci 26:4150

    Article  Google Scholar 

  24. Groenland JP, Eijkel CJ, Fluitman JH, Ridder RM (1992) Permalloy thin-film magnetic sensors. Sens Actuators A 30:89

    Article  Google Scholar 

  25. Boll R, Warlimont H (1981) Application of amorphous magnetic materials in electronics. IEEE Trans Magn 17:3053

    Article  Google Scholar 

  26. Alben R, Becker J, Chi M (1978) Random anisotropy in amorphous magnets. J Appl Phys 49:1653

    Article  Google Scholar 

  27. Chiriac H, Ciobotaru I, Mohorianu S (1994) Magnetic and magnetoelastic properties of amorphous ribbons. IEEE Trans Magn 30:518

    Article  Google Scholar 

  28. Herzer G (1995) Soft magnetic nanocrystalline materials. Scripta Metall 33:1741

    Article  Google Scholar 

  29. Willard MA, Huang M-Q, Laughlin DE, McHenry ME, Cross JO, Harris VG, Franchetti C (1999) Magnetic properties of HITPERM (Fe, Co)88Zr7B4Cu1 magnets. J Appl Phys 85:4421

    Article  Google Scholar 

  30. Szewczyk R (2016) Technical B-H saturation magnetization curve models for SPICE, FEM and MoM simulations. J Autom, Mob Rob Intell Syst 10:3

    Google Scholar 

  31. Szewczyk R, Nowicki M, Rzeplińska-Rykała K (2016) Models of magnetic hysteresis loops useful for technical simulations using finite elements method (FEM) and method of moments (MoM). Adv Intell Syst Comput 543:82

    Google Scholar 

  32. Ponjavic MM, Duric MR (2007) Nonlinear modelling of the self-oscillating fluxgate current sensor. IEEE Sens J 7:1546

    Article  Google Scholar 

  33. Mirsky G (2015) Magnetic-core modeling offers insight into behavior, operating range, saturation, Electron Des, 9 September

    Google Scholar 

  34. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313. https://doi.org/10.1093/comjnl/7.4.308

    Article  MathSciNet  MATH  Google Scholar 

  35. Sablik MJ, Jiles DC (1993) Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn 29(4):2113

    Article  Google Scholar 

  36. Ramesh A, Jiles DC, Roderik J (1996) A model of anisotropic anhysteretic magnetization. IEEE Trans Magn 32:4234–4236

    Article  Google Scholar 

  37. Ramesh A, Jiles DC, Bi Y (1997) Generalization of hysteresis modeling to anisotropic materials. J Appl Phys 81:5585–5587

    Article  Google Scholar 

  38. Szewczyk R (2014) Validation of the anhysteretic magnetization model for soft magnetic materials with perpendicular anisotropy. Mater 7:5109–5116

    Article  Google Scholar 

  39. Chwastek K, Szczyglowski J (2006) Identification of a hysteresis model parameters with genetic algorithms. Math Comput Simu 71:206–211. https://doi.org/10.1016/j.matcom.2006.01.002

    Article  MathSciNet  MATH  Google Scholar 

  40. Chwastek K (2012) Higher order reversal curves in some hysteresis models. Arch Electr Eng 61:455. https://doi.org/10.2478/v10171-012-0036-9

    Article  Google Scholar 

  41. Lozito GM, Fulginei FR, Salvini A (2015) On the generalization capabilities of the ten-parameter Jiles-Atherton model. Math Prob Eng (715018):13. 10.1155/2015/715018

  42. Szewczyk R (2014) Computational problems connected with Jiles-Atherton Model of magnetic hysteresis. Adv Intell Syst Comput 267:275

    Google Scholar 

  43. Kahaner D, Moler C, Nash S (1989) Numerical methods and software. Prentice–Hall, 1989

    Google Scholar 

  44. Lindner A, Hahn I, Böhm A (2013) A simple method for the parameter identification of the Jiles-Atherton model using only symmetric hysteresis loops. In: 39th Annual Conference of the IEEE Industrial Electronics Society, IECON 10–13 November 2013. 10.1109/IECON.2013.6699536

  45. Pop NC, Caltun OF (2011) Jiles–Atherton magnetic hysteresis parameters identification. Acta Phys Pol A 120:491

    Article  Google Scholar 

  46. Biedrzycki R, Jackiewicz D, Szewczyk R (2014) Reliability and efficiency of differential evolution based method of determination of Jiles-Atherton model parameters for X30Cr13 corrosion resisting martensitic steel. J Autom Mob Rob Intell Syst 8:63. https://doi.org/10.14313/JAMRIS_4-2014/39

    Article  Google Scholar 

  47. Preisach F (1935) Über die magnetische Nachwirkung. Zeitschrift für Physik 94:277–302

    Article  Google Scholar 

  48. Liorzou F, Phelps B, Atherton DL (2000) Macroscopic Models of Magnetization. IEEE Trans Magn 36(2):418

    Article  Google Scholar 

  49. Bhattacharyya MK, Gill HS, Simmons RF (1989) Determination of overwrite specification in thin-film head/disk systems. IEEE Trans Magn 25:4479

    Article  Google Scholar 

  50. Meyergoyz ID (1986) Mathematical models of hysteresis. IEEE Trans Magn 22:603

    Article  Google Scholar 

  51. Everett D (1955) A general approach to hysteresis—Part 4. An alternative formulation of the domain model. Trans Faraday Soc 51:1551–1557

    Article  Google Scholar 

  52. Bertotti G (1992) Dynamic generalization of the scalar Preisach model of hysteresis. IEEE Trans Magn 28:2599–2601

    Article  Google Scholar 

  53. De Wulf M, Dupré L, Melkebeek J (2000) Quasistatic measurements for hysteresis modeling. J Appl Phys 87:5239

    Article  Google Scholar 

  54. Frydrych P, Szewczyk R, Nowicki M (2017) Application of anisotropic vector preisach model for bulk materials. Acta Phys Pol A 131:618–620

    Article  Google Scholar 

  55. Sjostrom M (1999) Frequency analysis of classical preisach model. IEEE Trans Magn 35:2097

    Article  Google Scholar 

  56. Cao Y, Xu K, Jiang W, Droubay T, Ramuhalli P, Edwards D, Johnson BR, McCloy J (2015) Hysteresis in single and polycrystalline iron thin films: major and minor loops, first order reversal curves, and Preisach modelling. J Magn Magn Mater 395:361–375

    Article  Google Scholar 

  57. Szabo Z (2015) Preisach type hysteresis models with everett function in closed form COMPUMAG 2015. Montreal, Canada

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Szewczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szewczyk, R. (2018). Magnetic Materials and Magnetization Process. In: Magnetostatic Modelling of Thin Layers Using the Method of Moments And Its Implementation in Octave/Matlab. Lecture Notes in Electrical Engineering, vol 491. Springer, Cham. https://doi.org/10.1007/978-3-319-77985-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77985-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77984-3

  • Online ISBN: 978-3-319-77985-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics