Skip to main content

Efficiency of Photosynthesis and Photoelectrochemical Cells

  • Chapter
  • First Online:
  • 930 Accesses

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 117))

Abstract

The 21st century confronts us with significant challenges, summarized by the UN Sustainability Goals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.H. Ziska, J.A. Bunce, H. Shimono, D.R. Gealy, J.T. Baker, P.C.D. Newton, M.P. Reynolds, K.S.V. Jagadish, C. Zhu, M. Howden, L.T. Wilson, Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc. Biol. Sci. 279(1745), 4097–4105 (2012)

    Article  Google Scholar 

  2. X.-G. Zhu, S.P. Long, D.R. Ort, Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235–261 (2010)

    Article  Google Scholar 

  3. X.-G. Zhu, S.P. Long, D.R. Ort, What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19(2), 153–159 (2008)

    Article  Google Scholar 

  4. A. Melis, Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 177, 272–280 (2009)

    Article  Google Scholar 

  5. C.A.R Cotton, J.S. Douglass, S. De Causmaeker, K. Brinkert, T. Cardona, A. Fantuzzi, A.W. Rutherford, J.W. Murray, Photosynthetic constraints on fuels from microbes. Front. Bioeng. Biotechnol. 3(36) (2015)

    Google Scholar 

  6. J.H. Mussgnug, S. Thomas-Hall, J. Rupprecht, A. Foo, V. Klassen, A. McDowall et al., Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol. J. 5, 802–814 (2007)

    Google Scholar 

  7. H. Kirst, C. Formighieri, A. Melis, Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochim. Biophys. Acta 1837, 1653–1664 (2014)

    Article  Google Scholar 

  8. M. Chen, R.E. Blankenship, Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 16, 427–431 (2011)

    Article  Google Scholar 

  9. M. Chen, M. Schliep, R.D. Willows, Z.-L. Cai, B.A. Neilan, H. Scheer, A red-shifted chlorophyll. Science 329, 1318–1319 (2010)

    Article  Google Scholar 

  10. T. Renger, E. Schlodder, The primary electron donor of Photosystem II of the cyanobacterium Acaryochloris marina is a chlorophyll d and the water oxidation is driven by a chlorophyll a/chlorophyll d heterodimer. J. Phys. Chem. B 112, 7351–7354 (2008)

    Article  Google Scholar 

  11. S.P. Mielke, N.Y. Kiang, R.E. Blankenship, M.R. Gunner, D. Mauzerall, Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species. Biochim. Biophys. Acta 1807, 1231–1236 (2011)

    Article  Google Scholar 

  12. Y. Savir, E. Noor, R. Milo, T. Tlusty, Cross- species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc. Natl. Acad. Sci. U.S.A. 107, 3475–3480 (2010)

    Article  Google Scholar 

  13. P. Durão, H. Aigner, P. Nagy, O. Mueller-Cajar, F.U. Hartl, M. Hayer-Hartl, Opposing effects of folding and assembly chaperones on evolvability of RuBisCO. Nat. Chem. Biol. 11, 148–155 (2015)

    Article  Google Scholar 

  14. Y. Marcus, H. Altman-Gueta, Y. Wolff, M. Gurevitz, Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC6803. J. Exp. Bot. 62, 4173–4182 (2011)

    Article  Google Scholar 

  15. R. Kebeish, M. Niessen, K. Thiruveedhi, R. Bari, H.-J. Hirsch, R. Rosenkranz et al., Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat. Biotechnol. 25, 593–599 (2007)

    Article  Google Scholar 

  16. J. Zarzycki, V. Brecht, M. Müller, G. Fuchs, Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl. Acad. Sci. U.S.A. 106, 21317–21322 (2009)

    Article  Google Scholar 

  17. J. Han, E.D. McCarthy, W.V. Hoeven, M. Calvin, W.H. Bradley, Organic geochemical studies, II. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria, and in a recent lake sediment. Proc. Natl. Acad. Sci. U.S.A. 59, 26–33 (1968)

    Article  Google Scholar 

  18. P. Lindberg, S. Park, A. Melis, Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12, 70–79 (2010)

    Article  Google Scholar 

  19. J. Dexter, P. Fu, Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci. 2, 857–864 (2009)

    Article  Google Scholar 

  20. F.K. Bentley, A. Zurbriggen, A. Melis, Heterologous expression of the mevalonic acid path- way in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol. Plant 7, 71–86 (2014)

    Article  Google Scholar 

  21. H. Michel, The nonsense of biofuels. Angew. Chem. Int. Ed. 51, 2516–2518 (2012)

    Article  Google Scholar 

  22. H. Yoneyama, H. Sakamoto, H. Tamura, A photoelectrochemical cell with production of hydrogen and oxygen by cell reaction. Electrochim. Acta 20, 341–345 (1975)

    Article  Google Scholar 

  23. A.J. Nozik, p-n photoelectrolysis cells. Appl. Phys. Lett. 29(3), 150–153 (1976)

    Article  Google Scholar 

  24. J.W. Ager, M.R. Shaner, K.A. Walczak, I.D. Sharp, S. Ardo, Experimental demonstrations of spontaneous solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 8, 2811–2824 (2015)

    Article  Google Scholar 

  25. O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)

    Article  Google Scholar 

  26. S. Licht et al., Efficient solar water splitting, exemplified by RuO2-catalysed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104, 8920–8924 (2000)

    Article  Google Scholar 

  27. S.Y. Reece, D.G. Nocera, Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems. Annu. Rev. Biochem. 78, 673–699 (2009)

    Article  Google Scholar 

  28. K.T. Fountaine, H.-J. Lewerenz, H.A. Atwater, Efficiency limits for photoelectrochemical water-splitting. Nat. Commun. 7, 13706–13715 (2016)

    Article  Google Scholar 

  29. M.M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, T. Hannappel, Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Comm. 6, 8286–8272 (2015)

    Article  Google Scholar 

  30. R.H. Coridan, A.C. Nielander, S.A. Francis, M.T. McDowell, V. Dix, R.H. Chatman, N. Lewis, Methods for comparing the performance of energy conversion systems for use in solar fuels and solar electricity generation. Energy Environ. Sci. 8, 2886–2901 (2015)

    Article  Google Scholar 

  31. Z. Chen, H.N. Dinh, E. Miller (eds.), Photoelectrochemical Water Splitting (Springer Briefs in Energy, New York, Heidelberg, Dordrecht, London, 2013)

    Google Scholar 

  32. R.E. Blankenship, Molecular Mechanisms of Photosynthesis, 2nd edn. (Oxford, Wiley-Blackwell, 2014)

    Google Scholar 

  33. R. Sathre et al., Life-cycle energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 7, 3264–3278 (2014)

    Article  Google Scholar 

  34. M. Edelman, A.K. Mattoo, D1-protein dynamics in photosystem II: the lingering enigma. Photosynth. Res. 98, 609–620 (2008)

    Article  Google Scholar 

  35. E. Kanervo, P. Mäenpää, E.M. Aro, Localisation and processing of the precursor form of photosystem II protein D1 in Synechocystis 6803. J. Plant Physiol. 142, 669–675 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Brinkert .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brinkert, K. (2018). Efficiency of Photosynthesis and Photoelectrochemical Cells. In: Energy Conversion in Natural and Artificial Photosynthesis. Springer Series in Chemical Physics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-77980-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77980-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77979-9

  • Online ISBN: 978-3-319-77980-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics