Skip to main content

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 117))

  • 853 Accesses

Abstract

The International Energy Agency predicts a global annual energy consumption of about 28 TW in 2050, whereas the global population is predicted to increase from 7.2 to 9.7 billion. This doubled energy consumption let us face a new challenge in the 21st century: new energy sources are required, which allow us to step away from the use of fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Omae, Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev. 256, 1384–1405 (2012)

    Article  Google Scholar 

  2. W.J. Ong, M.M. Gui, S.P. Chai, R. Mohamed, Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Adv. 3, 4505–4509 (2013)

    Article  Google Scholar 

  3. C.B. Field, M.J. Behrenfeld, J.T. Randerson, P. Falkowski, Primary production of the biosphere: integrating terrestrial and oceanic compounds. Science 281, 237–240 (1998)

    Article  Google Scholar 

  4. E. Carmo-Silva, J.C. Scales, P.J. Madgwick, M.A.J. Parry, Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ. 38, 1817–1832 (2015)

    Article  Google Scholar 

  5. R.J. Ellis, The most abundant protein in the world. Trends. Biochem. Sci. 4, 241–244 (1979)

    Article  Google Scholar 

  6. J.A. Raven, Rubisco: still the most abundant protein on Earth? New Phytol. 198, 1–3 (2013)

    Article  Google Scholar 

  7. B.J. Walker, A. van Loocke, C.J. Bernacchi, D.R. Ort, The costs of photorespiration to food production now and in the future. Annu. Rev. Plant Biol. 67, 107–129 (2016)

    Article  Google Scholar 

  8. I. Andersson, Catalysis and regulation in Rubisco. J. Exp. Bot. 59(7), 1555–1568 (2008)

    Article  Google Scholar 

  9. I. Andersson, T.C. Taylor, Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys. 414, 130–140 (2003)

    Article  Google Scholar 

  10. S. Knight, I. Andersson, C.I. Brändén, Crystallographic analysis of ribulose-1,5-diphosphate carboxylase from spinach at 2.4 Å resolution: subunit interactions and the active site. Plant Physiol. 54, 678–685 (1990)

    Google Scholar 

  11. G. Tcherkez, Modelling the reaction mechanism of ribulose-1,5-bisphosphate carboxylase/oxygenase and consequences for kinetic parameters. Plant Cell Environ. 36, 1586–1596 (2013)

    Article  Google Scholar 

  12. D. Mc Nevin, S. von Caemmerer, G.D. Farquhar, Determining Rubisco activation kinetics and other rate and equilibrium constants by simultanous multiple non-linear regression of a kinetic model. J. Exp. Bot. 57, 3883–3900 (2006)

    Article  Google Scholar 

  13. T.J. Erb, J. Zarzycki, Biochemical and synthetic biology approaches to improve photosynthetic CO2 fixation. Curr. Opin. Chem. Biol. 34, 72–79 (2016)

    Article  Google Scholar 

  14. T.C. Taylor, I. Andersson, The structure of the complex between RubisCO and its natural substrate Ribulose-1,5-bisphosphate. J. Mol. Biol. 265, 432–444 (1997)

    Article  Google Scholar 

  15. T.J. Erb, B.S. Evans, K. Cho, B.P. Warlick, J. Sriram, B.M. Wood, H.J. Imker, J.V. Sweedler, F.R. Tabita, J.A. Gerit, A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat. Chem. Biol. 8, 926–932 (2012)

    Article  Google Scholar 

  16. R. Passalacqua, S. Perathoner, G. Centi, Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. J. Energ. Chem. 26, 219–240 (2017)

    Article  Google Scholar 

  17. B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 63, 541–569 (2012)

    Article  Google Scholar 

  18. H. Ono, A. Yokosuka, T. Tasiro, H. Morisaki, S. Yugo, Characterization of diamond-coated Si electrodes for photoelectrochemical reduction of CO2. New Diam. Front. Carbon Technol. 12, 141–144 (2002)

    Google Scholar 

  19. K. Hirota, D.A. Tryk, T. Yamamoto, K. Hashimoto, M. Okawa, A. Fujishima, Photoelectrochemical reduction reduction of CO2 in high-pressure CO2+ methanol medium at p-type semiconductor electrodes. J. Phys. Chem. B 102, 9834–9843 (1998)

    Article  Google Scholar 

  20. S. Kaneco, H. Katsmumata, T. Suzuki, K. Ohta, Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol. Chem. Eng. J. 116, 227–231 (2006)

    Article  Google Scholar 

  21. M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 275, 115–116 (1978)

    Article  Google Scholar 

  22. Y. Nakamura, R. Hinogami, S. Yae, Y. Nakato. (1998). Photoelectrochemical reduction of CO2 at a metal-particle modified p-Si electrode in non-aqueous solutions, in Studies in Surface Science and Catalysis, ed. by T. Makisy, T. Inui, T. Yamaguchi, vol 114, 565–568

    Google Scholar 

  23. S. Ikeda, M. Yoshida, K. Ito, Photoelectrochemical reduction products of carbon dioxide at metal coated p-GaP photocathodes in aqueous electrolytes. Bull. Chem. Soc. Jpn. 58, 1353–1357 (1985)

    Article  Google Scholar 

  24. S. Ikeda, Y. Saito, M. Yoshida, H. Noda, M. Maeda, K. Ito, Photoelectrochemical reduction products of carbon dioxide at metal coated p-GaP photocathodes in non-aqueous electrolytes. J. Electroanalyt. Chem. Interfac. Electrochem. 260, 335–345 (1989)

    Article  Google Scholar 

  25. Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002)

    Article  Google Scholar 

  26. B.A. Rosen, A. Salehi-Khojon, M.R. Thorson, W. Zhu, D.T. Whipple, P.J. Kenis, R.I. Masel, Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334, 643–644 (2011)

    Article  Google Scholar 

  27. C.H. Lim, A.M. Holder, J.T. Hynes, C.B. Musgave, Reduction of CO2 to methanol catalysed by a biomimetic organo-hydride produced from pyridine. J. Am. Chem. Soc. 136, 16081–16095 (2014)

    Article  Google Scholar 

  28. Z. Han, R. Kortlever, H.-Y. Chen, J.C. Peters, T. Agapie, CO2 reduction selective for C ≥ 2 products on polycrystalline copper with N-substituted pyridinium additives. ACS ent. Sci. 3, 853–859 (2017)

    Article  Google Scholar 

  29. E.E. Barton, D.M. Rampulla, A.B. Bocarsly, Selective solar-driven reduction of CO2 to methanol using a catalysed p-GaP based photoelectrochemical cell. J. Am. Chem. Sc. 130, 6342–6344 (2008)

    Article  Google Scholar 

  30. C.G. Silva, A. Corma, H. Gracia, Metal-organic frameworks as semiconductors. J. Mater. Chem. 20, 3141–3156 (2010)

    Article  Google Scholar 

  31. C. Wang, Z. Xie, K.E. deKrafft, W. Lin, Doping metal-organic frameworks for water oxidation carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13454–13455 (2011)

    Google Scholar 

  32. R.J. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  Google Scholar 

  33. A.J. Göttle, M.T.M. Koper, Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 8, 458–465 (2017)

    Article  Google Scholar 

  34. M.T.M. Koper, Theory of the transition from sequential to concerted electrochemical proton-electron transfer. Phys. Chem. Chem. Phys. 15(5), 1399–1407 (2013)

    Article  Google Scholar 

  35. S.C.S. Lai, S.E.F Kleijn, F.T.Z. Ozturk, V.C. van R. Vellinga, J. Koning, P. Rodriguez, M.T.M. Koper (2010). Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catal. Today 154(1–2), 92–104

    Google Scholar 

  36. P. Rodriguez, Y. Kwon, M.T.M. Koper, The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat. Chem. 4(3), 177–182 (2011)

    Article  Google Scholar 

  37. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Brinkert .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brinkert, K. (2018). Carbon Fixation. In: Energy Conversion in Natural and Artificial Photosynthesis. Springer Series in Chemical Physics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-77980-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77980-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77979-9

  • Online ISBN: 978-3-319-77980-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics