Skip to main content

Water Oxidation Catalysis and Hydrogen Evolution

  • Chapter
  • First Online:
  • 954 Accesses

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 117))

Abstract

The application of electrolysis or photoelectrolysis of water to generate oxygen and hydrogen gas could provide a scalable mechanism to store intermittent renewable energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.J. Debus, The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys. Acta. Bioenerg. 1102, 269–352 (1992)

    Article  Google Scholar 

  2. M. Suga et al., Native structure of Photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517(7532), 99–103 (2015)

    Article  Google Scholar 

  3. J.D. Blakemore, R.H. Crabtree, G.W. Brudvig, Molecular catalysts for water oxidation. Chem. Rev. 115(23), 12974–13005 (2015)

    Article  Google Scholar 

  4. J.W. Murray, J. Barber, Structural characteristics of channels and pathways in Photosystem II including the identification of an oxygen channel. J. Struct. Biol. 159, 228–237 (2007)

    Article  Google Scholar 

  5. F.M. Ho, S. Styring, Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim. Biophys. Acta 1777, 140–153 (2008)

    Article  Google Scholar 

  6. A. Gabdulkhakov, A. Guskov, M. Broser, J. Kern, F. Müh, W. Saenger, A. Zouni, Probing the accessibility of the Mn4Ca cluster in Photosystem II: channels calculation, noble gas derivatization, and cocrystallization with DMSO. Structure 17(9), 1223–1234 (2009)

    Article  Google Scholar 

  7. H. Ishikita, W. Saenger, B. Loll, J. Biesiadka, E.W. Knapp, Energetics of a possible proton exit pathway for water oxidation in Photosystem II. Biochemistry 45, 2063–2071 (2006)

    Article  Google Scholar 

  8. S. Vassiliev, P. Comte, A. Mahboob, D. Bruce, Tracking the flow of water through Photosystem II using molecular dynamics and streamline tracing. Biochemistry 49, 1873–1881 (2010)

    Article  Google Scholar 

  9. V. Krewald, M. Retegan, N. Cox, J. Messinger, W. Lubitz, S. DeBeer, F. Neese, D.A. Pantazis, Metal oxidation states in biological water splitting. Chem. Sci. 6, 1676–1695 (2015)

    Article  Google Scholar 

  10. G.C. Dismukes, Y. Siderer, Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc. Natl. Acad. Sci. U.S.A. 93, 3335–3340 (1981)

    Google Scholar 

  11. H. Dau, I. Zaharieva, M. Haumann, Recent developments in research on water oxidation by Photosystem II. Curr. Opin. Chem. Biol. 16(1–2), 3–10 (2012)

    Article  Google Scholar 

  12. D.J. Vinyard, S. Khan, G.W. Brudvig, Photosynthetic water oxidation: binding and activation of substrate waters for O–O bond formation. Faraday Discuss. 185, 37–50 (2015)

    Article  Google Scholar 

  13. K. Sauer, J. Yano, V.K. Yachandra, X-ray spectroscopy of the photosynthetic oxygen-evolving complex. Coord. Chem. Rev. 252, 318–335 (2008)

    Article  Google Scholar 

  14. P.E.M. Siegbahn, A structure-consistent mechanism for dioxygen formation in Photosystem II. Chem. Eur. J. 14, 8290–8302 (2008)

    Article  Google Scholar 

  15. J. Yano, V. Yachandra, Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114, 4175–4205 (2014)

    Article  Google Scholar 

  16. I.D. Young et al., Structure of Photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016)

    Article  Google Scholar 

  17. M. Pèrez-Navarro, F. Neese, W. Lubitz, D.A. Pantazis, N. Cox, Recent developments in biological water oxidation. Curr. Opin. Chem. Biol. 31, 113–119 (2016)

    Article  Google Scholar 

  18. D.A. Pantazis, W. Ames, N. Cox, W. Lubitz, F. Neese, Two interconvertible structures that explain the spectroscopic properties of the oxygen-evolving complex of Photosystem II in the S2 state. Angew. Chem. Int. Ed. 51, 9935–9940 (2012)

    Article  Google Scholar 

  19. N. Cox, M. Retegan, F. Neese, D.A. Pantazis, A. Boussac, W. Lubitz, Electronic structure of the oxygen-evolving complex in Photosystem II prior to O–O bond formation. Science 345, 804–808 (2016)

    Article  Google Scholar 

  20. A. Boussac, A.W. Rutherford, S. Styring, Interaction of ammonia with the water-splitting enzyme of Photosystem II. Biochemistry 29, 24–32 (1990)

    Article  Google Scholar 

  21. J. Messinger, M. Badger, T. Wydrzynski, Detection of one slowly exchanging substrate water molecule in the S3 state of Photosystem II. Proc. Natl. Acad. Sci. U.S.A. 11, 3209–3213 (1995)

    Article  Google Scholar 

  22. V.L. Pecoraro, M.J. Baldwin, M.T. Caudle, W.-Y. Hsieh, N.A. Law, A proposal for water oxidation in Photosystem II. Pure Appl. Chem. 70, 925–929 (1998)

    Article  Google Scholar 

  23. S. Romain, L. Vigara, A. Llobet, Oxygen-oxygen bond formation pathways promoted by ruthenium complexes. Acc. Chem. Res. 42, 1944–1953 (2009)

    Article  Google Scholar 

  24. P.E.M. Siegbahn, Water oxidation mechanism in Photosystem II, including oxidations, proton release pathways, O–O bond formation and O2 release. Biochim. Biophys. Acta 1827, 1003–1019 (2013)

    Article  Google Scholar 

  25. W. Hillier, T. Wydrzynski, 18O-Water exchange in Photosystem II: substrate binding and intermediates of the water splitting cycle. Coord. Chem. Rev. 252, 306–317 (2008)

    Article  Google Scholar 

  26. M.X. Tan, C.N. Kenyon, N.S. Lewis, Experimental measurement of quasi-fermi levels at an illuminated semiconductor/liquid contact. J. Phys. Chem. 98, 4959–4962 (1997)

    Article  Google Scholar 

  27. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  Google Scholar 

  28. H.B. Beer, Patent (England), vol. 1, 147–442 (1965)

    Google Scholar 

  29. M.M. May, H.-J. Lewerenz, D. Lackner, F. Dimroth, T. Hannappel, Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Comm. 6, 8272–8286 (2015)

    Article  Google Scholar 

  30. P. Rasiyah, A.C.C. Tseung, The role of the lower metal oxide/higher metal oxide couple in oxygen evolution reactions. J. Electrochem. Soc. 131, 803–808 (1984)

    Article  Google Scholar 

  31. S. Trasatti, Electrocatalysis by oxides—attempt at a unifying approach. J. Electroanal. Chem. 111, 125–131 (1980)

    Article  Google Scholar 

  32. J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. Electroanalyt. Chem. 607, 83–89 (2007)

    Article  Google Scholar 

  33. C.W. Cady, R.H. Crabtree, G.W. Brudvig, Functional models for the oxygen-evolving complex of Photosystem II. Coord. Chem. Rev. 252, 444–455 (2008)

    Article  Google Scholar 

  34. S.W. Gersten, G.J. Samuels, T.J. Meyer, Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 104, 4029–4030 (1982)

    Article  Google Scholar 

  35. B.A. Moyer, T.J. Meyer, Oxobis (2,2’-bipyridine)-pyridineruthenium (IV) ion, [(bpy)2(py)Ru=O]2+. J. Am. Chem. Soc. 100, 3601–3603 (1978)

    Article  Google Scholar 

  36. N.D. McDaniel, F.J. Coughlin, L.L. Tinker, S. Bernhard, Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogenous oxidation of water. J. Am. Chem. Soc. 130, 8730–8731 (2008)

    Article  Google Scholar 

  37. J.J. Concepcion, J.W. Jurss, J.L. Templeton, T.J. Meyer, One site is enough. Catalytic water oxidation by [Ru(tpy)(bpm)(OH2)]2+ and [Ru(tpy)(bpz)(OH2)]2+. J. Am. Chem. Soc. 130(49), 16462–16463 (2008)

    Article  Google Scholar 

  38. J.F. Hull, D. Balcells, J.D. Blakemore, C.D. Incarvito, O. Eisenstein, G.W. Brudvig, R.H. Crabtree, Highly active and robust Cp* irdium complexes for catalytic water oxidation. J. Am. Chem. Soc. 131, 8730–8731 (2009)

    Article  Google Scholar 

  39. A. Singh, L. Spiccia, Water oxidation catalysts based on abundant 1st row transition metals. Coord. Chem. Rev. 257, 2607–2622 (2013)

    Article  Google Scholar 

  40. W.C. Ellis, N.D. McDaniel, S. Bernhard, T.J. Collins, Fast water oxidation using iron. J. Am. Chem. Soc. 132, 10990–10991 (2010)

    Article  Google Scholar 

  41. M.Z. Ertem, L. Gagliardi, C.J. Cramer, Quantum chemical characterization of the mechanism of an iron-based water oxidation catalyst. Chem. Sci. 3, 1293–1299 (2012)

    Article  Google Scholar 

  42. T. Abe, K. Nagai, S. Kabutomori, M. Kaneko, A. Tajiri, T. Norimatsu, Photoelectrode working in the water phase: visible-light-induced dioxygen evolution by a perylene derivative/cobalt phthalocyanine bilayer. Angew. Chem. Int. Ed. Engl. 45, 2778–2781 (2006)

    Article  Google Scholar 

  43. D.K. Dogutan, R. McGuire, D.G. Nocera, Electrocatalytic water oxidation by cobalt(III) hangman β-octafluoro corroles. J. Am. Chem. Soc. 133, 9178–9180 (2011)

    Article  Google Scholar 

  44. T. Nakazono, A.R. Parent, K. Sakai, Porphyrins as homogenous catalysts for water oxidation. Chem. Commun. 49, 6325–6327 (2013)

    Article  Google Scholar 

  45. V.Y. Shafirovich, N.K. Khannanov, V.V. Strelets, Chemical and light-induced catalytic water oxidation. Nouv. J. Chim. 4, 81–84 (1980)

    Google Scholar 

  46. S.M. Barnett, K.I. Goldberg, J.M. Mayer, Soluble copper-bipyride water-oxidation electrocatalyst. Nat. Chem. 4, 498–502 (2012)

    Article  Google Scholar 

  47. T. Zhang, C. Wang, S. Liu, J.-L. Wang, W. Lin, A biomimetic copper water oxidation catalyst with low overpotential. J. Am. Chem. Soc. 136, 273–281 (2013)

    Article  Google Scholar 

  48. E. Mirzakulova, R. Khatmullin, J. Walpita, T. Corrigam, N.M. Vargas-Barbosa, S. Vyas, S. Oottikkal, S.F. Manzer, C.M. Hadad, K.D. Glusac, Electrode-assisted catalytic water oxidation by flavin derivative. Nat. Chem. 4, 794–801 (2012)

    Article  Google Scholar 

  49. S. Trasatti, Electrocatalysis by oxides—attempt at a unifying approach. J. Electroanal. Chem. 111, 125–131 (1980)

    Article  Google Scholar 

  50. B.E. Conway, M. Salomon, Electrochemical reaction orders: applications to the hydrogen-and oxygen-evolution reactions. Electrochim. Acta 9(12), 1599–1615 (1964)

    Article  Google Scholar 

  51. A.J. Nozik, p-n photoelectrolysis cells. Appl. Phys. Lett. 29(3), 150–153 (1976)

    Article  Google Scholar 

  52. S.J. Trasatti, Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. Electroanal. Chem. 39(1), 163–184 (1972)

    Article  Google Scholar 

  53. H. Gerischer, Mechanism of electrolytic discharge of hydrogen and adsorption energy of atomic hydrogen. Bull. Soc. Chim. Belg. 67, 506–512 (1958)

    Article  Google Scholar 

  54. R. Parsons, The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958)

    Article  Google Scholar 

  55. B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002)

    Article  Google Scholar 

  56. B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jorgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Norskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127(15), 5308–5309 (2005)

    Article  Google Scholar 

  57. E. Aharon-Shalom, A. Heller, Efficient p-InP (Rh-H alloy) and p-InP (Re H alloy) hydrogen evolving photocathodes. J. Electrochem. Soc. 129(12), 2865–2866 (1982)

    Article  Google Scholar 

  58. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement of photocatalytic H2 evolution on CdS by Loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130(23), 7176–7177 (2008)

    Article  Google Scholar 

  59. H. Wendt, V. Plzak, Electrocatalytic and thermal activation of anodic oxygen- and cathodic hydrogen-evolution in alkaline water electrolysis. Electrochim. Acta 28, 27–34 (1983)

    Article  Google Scholar 

  60. I.M. Kodintsev, S. Trasatti, Electrocatalysis of H2 evolution on RuO2 + IrO2 mixed oxide electrodes. Electrochim. Acta 39, 1804–1808 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Brinkert .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brinkert, K. (2018). Water Oxidation Catalysis and Hydrogen Evolution. In: Energy Conversion in Natural and Artificial Photosynthesis. Springer Series in Chemical Physics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-77980-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77980-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77979-9

  • Online ISBN: 978-3-319-77980-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics