Advertisement

Verification of Fault-Tolerant Protocols with Sally

  • Bruno Dutertre
  • Dejan Jovanović
  • Jorge A. Navas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10811)

Abstract

Sally is a model checker for infinite-state systems that implements several verification algorithms, including a variant of IC3/PDR called Property-Directed K-induction. We present an application of Sally to automated verification of fault-tolerant distributed algorithms.

References

  1. 1.
    Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0Google Scholar
  2. 2.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000).  https://doi.org/10.1007/10722167_31 CrossRefGoogle Scholar
  3. 3.
    Boyer, R.S., Moore, J.S.: MJRTY-a fast majority vote algorithm. In: Boyer, R.S. (ed.) Automated Reasoning: Essays in Honor of Woody Blesdoe, vol. 1, pp. 105–117. Springer, Dordrecht (1991).  https://doi.org/10.1007/978-94-011-3488-0_5 CrossRefGoogle Scholar
  4. 4.
    Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-18275-4_7 CrossRefGoogle Scholar
  5. 5.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36742-7_7 CrossRefGoogle Scholar
  6. 6.
    de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27813-9_45 CrossRefGoogle Scholar
  7. 7.
    de Moura, L., Owre, S., Shankar, N.: The SAL language manual. Technical Report SRI-CSL-01-02, Computer Science Laboratory, SRI International (2003)Google Scholar
  8. 8.
    Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08867-9_49 Google Scholar
  9. 9.
    Fisman, D., Kupferman, O., Lustig, Y.: On verifying fault tolerance of distributed protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 315–331. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_22 CrossRefGoogle Scholar
  10. 10.
    Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31612-8_13 CrossRefGoogle Scholar
  11. 11.
    John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp. 201–209 (2013)Google Scholar
  12. 12.
    Jovanović, D., Dutertre, B.: Property-directed k-induction. In: FMCAD, pp. 85–92 (2016)Google Scholar
  13. 13.
    Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08867-9_2 Google Scholar
  14. 14.
    Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction: parameterized model checking of threshold-based distributed algorithms. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 85–102. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21690-4_6 CrossRefGoogle Scholar
  15. 15.
    Lincoln, P., Rushby, J.: Formal verification of an interactive consistency algorithm for the Draper FTP architecture under a hybrid fault model. In: COMPASS, pp. 107–120 (1994)Google Scholar
  16. 16.
    Miner, P., Geser, A., Pike, L., Maddalon, J.: A unified fault-tolerance protocol. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 167–182. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30206-3_13 CrossRefGoogle Scholar
  17. 17.
    Miner, P.S.: Verification of fault-tolerant clock synchronization systems. NASA Technical Paper 3349 (1993)Google Scholar
  18. 18.
    Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-tolerant architectures: prolegomena to the design of PVS. IEEE Trans. Softw. Eng. 21(2), 107–125 (1995)CrossRefGoogle Scholar
  19. 19.
    Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning about distributed protocols. In: OOPSLA, vol. 1, pp. 108:1–108:31 (2017)Google Scholar
  20. 20.
    Pike, L., Maddalon, J., Miner, P., Geser, A.: Abstractions for fault-tolerant distributed system verification. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 257–270. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30142-4_19 CrossRefGoogle Scholar
  21. 21.
    Wilcox, J.R., Woos, D., Pancheckha, P., Tatlock, Z., Wang, X., Ernst, M.D., Anderson, T.: Verdi: a framework for implementing and formally verifying distributed systems. In: PLDI, pp. 357–368 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science LaboratorySRI InternationalMenlo ParkUSA

Personalised recommendations