Skip to main content

Stroke Rehabilitation: Therapy Robots and Assistive Devices

  • Chapter
  • First Online:
Book cover Sex-Specific Analysis of Cardiovascular Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1065))

Abstract

Motor impairments after stroke are often persistent and disabling, and women are less likely to recover and show poorer functional outcomes. To regain motor function after stroke, rehabilitation robots are increasingly integrated into clinics. The devices fall into two main classes: robots developed to train lost motor function after stroke (therapy devices) and robots designed to compensate for lost skills (i.e., assistive devices). The article provides an overview of therapeutic options with robots for motor rehabilitation after stroke.

Therapy robots and assistive devices. Art work by Piet Michiels, Leuven, Belgium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feigin VL, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–55.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8(4):355–69.

    Article  PubMed  Google Scholar 

  3. Bushnell C, et al. Guidelines for the prevention of stroke in women. Stroke. 2014;45(5):1545–88.

    Article  PubMed  Google Scholar 

  4. W. G. f. t. W. s. H. I. Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.

    Article  Google Scholar 

  5. Lackland DT, et al. Factors influencing the decline in stroke mortality. Stroke. 2014;45(1):315–53.

    Article  PubMed  Google Scholar 

  6. N. C. f. H. Statistics. Health, United States, 2011. Hyattsville: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 2012.

    Google Scholar 

  7. Appelros P, Stegmayr B, Terént A. Sex differences in stroke epidemiology. Stroke. 2009;40(4):1082–90.

    Article  PubMed  Google Scholar 

  8. O’Donnell MJ, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–23.

    Article  PubMed  Google Scholar 

  9. Olsen TS, Dehlendorff C, Andersen KK. Sex-related time-dependent variations in post-stroke survival–evidence of a female stroke survival advantage. Neuroepidemiology. 2007;29(3–4):218–25.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berger JS, Roncaglioni MC, Avanzini F, Pangrazzi I, Tognoni G, Brown DL. Aspirin for the primary prevention of cardiovascular events in women and men: a sex-specific meta-analysis of randomized controlled trials. JAMA. 2006;295(3):306–13.

    Article  CAS  PubMed  Google Scholar 

  11. A. Trialists’Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71–86.

    Article  Google Scholar 

  12. Reeves MJ, et al. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008;7(10):915–26.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gibson CL. Cerebral ischemic stroke: is gender important? J Cereb Blood Flow Metab. 2013;33(9):1355–61.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Peterson BL, Won S, Geddes RI, Sayeed I, Stein DG. Sex-related differences in effects of progesterone following neonatal hypoxic brain injury. Behav Brain Res. 2015;286:152–65.

    Article  CAS  PubMed  Google Scholar 

  15. Gibson CL, Gray LJ, Murphy SP, Bath PM. Estrogens and experimental ischemic stroke: a systematic review. J Cereb Blood Flow Metab. 2006;26(9):1103–13.

    Article  CAS  PubMed  Google Scholar 

  16. Di Carlo A, et al. Sex differences in the clinical presentation, resource use, and 3-month outcome of acute stroke in Europe. Stroke. 2003;34(5):1114–9.

    Article  PubMed  Google Scholar 

  17. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.

    Article  PubMed  Google Scholar 

  18. Paolucci S, et al. Is sex a prognostic factor in stroke rehabilitation? Stroke. 2006;37(12):2989–94.

    Article  PubMed  Google Scholar 

  19. Bassey E, Harries U. Normal values for handgrip strength in 920 men and women aged over 65 years, and longitudinal changes over 4 years in 620 survivors. Clin Sci. 1993;84(3):331–7.

    Article  CAS  PubMed  Google Scholar 

  20. Rantanen T, Era P, Heikkinen E. Physical activity and the changes in maximal isometric strength in men and women from the age of 75 to 80 years. J Am Geriatr Soc. 1997;45(12):1439–45.

    Article  CAS  PubMed  Google Scholar 

  21. Ada L, Dorsch S, Canning CG. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust J Physiother. 2006;52(4):241–8.

    Article  PubMed  Google Scholar 

  22. Veerbeek JM, et al. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PloS One. 2014;9(2):e87987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. The Cochrane Library. 2015.

    Google Scholar 

  24. Bowden MG, Woodbury ML, Duncan PW. Promoting neuroplasticity and recovery after stroke: future directions for rehabilitation clinical trials. Curr Opin Neurol. 2013;26(1):37–42.

    Article  PubMed  Google Scholar 

  25. French B, et al. Repetitive task training for improving functional ability after stroke. The Cochrane Library. 2016.

    Google Scholar 

  26. Lang CE, et al. Observation of amounts of movement practice provided during stroke rehabilitation. Arch Phys Med Rehabil. 2009;90(10):1692–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lang CE, et al. Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Ann Neurol. 2016;80(3):342–54.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014;11(3). https://doi.org/10.1186/1743-0003-11-3.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lo AC, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010;362(19):1772–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keller U, Klamroth V, van Hedel HJ, Riener R. ChARMin: a robot for pediatric arm rehabilitation. In: Robotics and Automation (ICRA), 2013 I.E. International Conference on. IEEE; 2013. p. 3908–13.

    Google Scholar 

  31. Guidali M, Erne R, Riener R, Lambercy O, Gassert R, “Instrumented handles for an arm rehabilitation robot,” In: Automed Workshop; 2010.

    Google Scholar 

  32. Nef T, Guidali M, Riener R. ARMin III – arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech. 2009;6(2):127–42.

    Article  Google Scholar 

  33. Guidali M, Schlink P, Duschau-Wicke A, Riener R. Online learning and adaptation of patient support during ADL training. In: Proceedings of IEEE International Rehabilitation Robotics (ICORR) conference; 2011. p. 1–6.

    Google Scholar 

  34. Klamroth-Marganska V, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014;13(2):159–66.

    Article  PubMed  Google Scholar 

  35. Valero-Cuevas FJ, Klamroth-Marganska V, Winstein CJ, Riener R. Robot-assisted and conventional therapies produce distinct rehabilitative trends in stroke survivors. J NeuroEng Rehabil. 2016;13(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. Handb Clin Neurol. 2013;110:93–103.

    Article  PubMed  Google Scholar 

  37. Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995;76(1):27–32.

    Article  PubMed  Google Scholar 

  38. Hesse S, Sarkodie-Gyan T, Uhlenbrock D. Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects-Weiterentwicklung Eines Mechanisierten Gangtrainers mit Steuerung des Massenschwerpunktes zur Gangrehabilitation Rollstuhlpflichtiger Patienten. Biomed Tech/Biomed Eng. 1999;44(7–8):194–201.

    Article  CAS  Google Scholar 

  39. Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010;7(1):30.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schmidt K, et al. The Myosuit: bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers. Front Neurorobot. 2017;11:57.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Asbeck AT, De Rossi SM, Holt KG, Walsh CJ. A biologically inspired soft exosuit for walking assistance. Int J Robot Res. 2015;34(6):744–62.

    Article  Google Scholar 

  42. Awad LN, et al. A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med. 2017;9(400):eaai9084.

    Article  PubMed  Google Scholar 

  43. Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. The Cochrane Library. 2017.

    Google Scholar 

  44. Marchal-Crespo L, Michels L, Jaeger L, López-Olóriz J, Riener R. Effect of error augmentation on brain activation and motor learning of a complex locomotor task. Front Neurosci. 2017;11:526.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cesqui B, Aliboni S, Mazzoleni S, Carrozza M, Posteraro F, Micera S. On the use of divergent force fields in robot-mediated neurorehabilitation. In: Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on. IEEE; 2008. p. 854–861.

    Google Scholar 

  46. Carel C, et al. Neural substrate for the effects of passive training on sensorimotor cortical representation: a study with functional magnetic resonance imaging in healthy subjects. J Cereb Blood Flow Metab. 2000;20(3):478–84.

    Article  CAS  PubMed  Google Scholar 

  47. Heuer H, Lüttgen J. Robot assistance of motor learning: a neuro-cognitive perspective. Neurosci Biobehav Rev. 2015;56:222–40.

    Article  PubMed  Google Scholar 

  48. Brunnstrom S. Motor testing procedures in hemiplegia: based on sequential recovery stages. Phys Ther. 1966;46(4):357–75.

    Article  CAS  PubMed  Google Scholar 

  49. van Kordelaar J, van Wegen E, Kwakkel G. Impact of time on quality of motor control of the paretic upper limb after stroke. Arch Phys Med Rehabil. 2014;95(2):338–44.

    Article  PubMed  Google Scholar 

  50. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19(1):84–90.

    Article  PubMed  Google Scholar 

  51. Cortes JC, et al. A short and distinct time window for recovery of arm motor control early after stroke revealed with a global measure of trajectory kinematics. Neurorehabil Neural Repair. 2017;31(6):552–60.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Agostini M, et al. Telerehabilitation and recovery of motor function: a systematic review and meta-analysis. J Telemed Telecare. 2015;21(4):202–13.

    Article  PubMed  Google Scholar 

  53. Chen J, Jin W, Zhang X-X, Xu W, Liu X-N, Ren C-C. Telerehabilitation approaches for stroke patients: systematic review and meta-analysis of randomized controlled trials. J Stroke Cerebrovasc Dis. 2015;24(12):2660–8.

    Article  PubMed  Google Scholar 

  54. Butler A, Bay C, Wu D, Richards K, Buchanan S. Expanding tele-rehabilitation of stroke through in-home robot. 2014.

    Google Scholar 

  55. Ivanova E, Minge M, Schmidt H, Thüring M, Krüger J. User-centered design of a patient’s work station for haptic robot-based telerehabilitation after stroke. Curr Dir Biomed Eng. 2017;3(1):39–43.

    Google Scholar 

  56. Just F, Baur K, Riener R, Klamroth-Marganska V, Rauter G. Online adaptive compensation of the ARMin Rehabilitation Robot. In: Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE international conference on IEEE; 2016. p. 747–752.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Klamroth-Marganska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klamroth-Marganska, V. (2018). Stroke Rehabilitation: Therapy Robots and Assistive Devices. In: Kerkhof, P., Miller, V. (eds) Sex-Specific Analysis of Cardiovascular Function. Advances in Experimental Medicine and Biology, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-319-77932-4_35

Download citation

Publish with us

Policies and ethics