Advertisement

Challenges and Cases of Genomic Data Integration Across Technologies and Biological Scales

  • Shamith A. SamarajiwaEmail author
  • Ioana Olan
  • Dóra Bihary
Chapter
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 93)

Abstract

Current technological advancements have facilitated novel experimental methods that measure a diverse assortment of biological processes, creating a data deluge in biology and medicine. This proliferation of data sources, from large repositories and data warehouses to specialist databases that store a variety of different data types, contributing to a multitude of different file formats, have necessitated minimal data standards that describe both data and annotation. In addition to integrating at the data resource level, development of integrative computational or statistical methods that explore two or more data types or biological layers to understand their joint influence can lead to a better understanding of both normal and pathological processes. Combination of these different data-layers, in turn enables us to glean a more integrative understanding of complex biological systems. Development of integrative methods that bridge both biology and technology can provide insight into different scales of gene and genome regulation. Some of these integrative approaches and their application are explored in this chapter in the context of modern genomics.

References

  1. 1.
    Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34:D504–D506.  https://doi.org/10.1093/nar/gkj126CrossRefGoogle Scholar
  2. 2.
    Bednar J, Horowitz RA, Grigoryev SA et al (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci U S A 95:14173–14178.  https://doi.org/10.1073/pnas.95.24.14173CrossRefGoogle Scholar
  3. 3.
    Berners-Lee T. (2006) Linked Data Design Issues. http://www.w3.org/DesignIssues/LinkedData.html. Accessed 30 June 2017
  4. 4.
    Benson DA, Cavanaugh M, Clark K et al (2017) GenBank. Nucleic Acids Res 45:D37–D42.  https://doi.org/10.1093/nar/gkw1070CrossRefGoogle Scholar
  5. 5.
    BioMart (2009) https://www.biomart.org. Accessed 30 June 2017
  6. 6.
    Biosharing (2016) https://biosharing.org. Accessed 30 June 2017
  7. 7.
    Brazma A (2009) Minimum information about a microarray experiment (MIAME)–successes, failures, challenges. SciWorld J 9:420–423.  https://doi.org/10.1100/tsw.2009.57CrossRefGoogle Scholar
  8. 8.
    Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37.  https://doi.org/10.1038/4462CrossRefGoogle Scholar
  9. 9.
    Cairns J (2012) Rcade: a tool for integrating a count-based ChIP-seq analysis with differential expression summary data. R package version 1.16.0Google Scholar
  10. 10.
    Casper J, Zweig AS, Villarreal C et al (2017) The UCSC Genome browser database: 2018 update. Nucleic Acids Res.  https://doi.org/10.1093/nar/gkx1020CrossRefGoogle Scholar
  11. 11.
    Chen H, Yu T, Chen JY (2013) Semantic web meets integrative biology: a survey. Brief Bioinform 14:109–125.  https://doi.org/10.1093/bib/bbs014CrossRefGoogle Scholar
  12. 12.
    Ching T, Huang S, Garmire LX (2014) Power analysis and sample size estimation for RNA-Seq differential expression. RNA 20:1684–1696.  https://doi.org/10.1261/rna.046011.114CrossRefGoogle Scholar
  13. 13.
    Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301.  https://doi.org/10.1038/35066075CrossRefGoogle Scholar
  14. 14.
    Crowdflower (2016) Crowdflower Data Science Report 2016. http://visit.crowdflower.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf. Accessed 30 June 2017
  15. 15.
    Dekker J, Mirny L (2016) The 3D genome as moderator of chromosomal communication. Cell 164:1110–1121.  https://doi.org/10.1016/j.cell.2016.02.007CrossRefGoogle Scholar
  16. 16.
    Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4:1184–1191.  https://doi.org/10.1038/nprot.2009.97CrossRefGoogle Scholar
  17. 17.
    Ernst J, Kellis M (2012) ChromHMM: automating chromatin-state discovery and characterization. Nat Methods 9:215–216.  https://doi.org/10.1038/nmeth.1906CrossRefGoogle Scholar
  18. 18.
    Fillbrunn A, Dietz C, Pfeuffer J et al (2017) KNIME for reproducible cross-domain analysis of life science data. J Biotechnol 261:149–156.  https://doi.org/10.1016/j.jbiotec.2017.07.028CrossRefGoogle Scholar
  19. 19.
    Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114.  https://doi.org/10.1038/nature16490CrossRefGoogle Scholar
  20. 20.
    Functional Genomics Data Society (2010) http://fged.org. Accessed 30 June 2017
  21. 21.
    Galperin MY, Fernández-Suárez XM, Rigden DJ (2017) The 24th annual nucleic acids research database issue: a look back and upcoming changes. Nucleic Acids Res 45:5627.  https://doi.org/10.1093/nar/gkx021CrossRefGoogle Scholar
  22. 22.
    Giardine B, Riemer C, Hardison RC et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15:1451–1455.  https://doi.org/10.1101/gr.4086505CrossRefGoogle Scholar
  23. 23.
    Giorgetti L, Lajoie BR, Carter AC et al (2016) Structural organization of the inactive X chromosome in the mouse. Nature 535:575–579.  https://doi.org/10.1038/nature18589CrossRefGoogle Scholar
  24. 24.
    Gligorijević V, Malod-Dognin N, Pržulj N (2016) Integrative methods for analyzing big data in precision medicine. Proteomics 16:741–758.  https://doi.org/10.1002/pmic.201500396CrossRefGoogle Scholar
  25. 25.
    Goble C, Stevens R (2008) State of the nation in data integration for bioinformatics. J Biomed Inform 41:687–693.  https://doi.org/10.1016/j.jbi.2008.01.008CrossRefGoogle Scholar
  26. 26.
    Henry VJ, Bandrowski AE, Pepin A-S et al (2014) OMICtools: an informative directory for multi-omic data analysis. Database (Oxford).  https://doi.org/10.1093/database/bau069CrossRefGoogle Scholar
  27. 27.
    Hoffman MM, Buske OJ, Wang J et al (2012) Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat Methods 9:473–476.  https://doi.org/10.1038/nmeth.1937CrossRefGoogle Scholar
  28. 28.
    Hood L, Rowen L (2013) The Human Genome Project: big science transforms biology and medicine. Genome Med 5:79.  https://doi.org/10.1186/gm483CrossRefGoogle Scholar
  29. 29.
    Horbach SPJM, Halffman W (2017) The ghosts of HeLa: how cell line misidentification contaminates the scientific literature. PLoS ONE 12:e0186281.  https://doi.org/10.1371/journal.pone.0186281CrossRefGoogle Scholar
  30. 30.
    Hull D, Wolstencroft K, Stevens R et al (2006) Taverna: a tool for building and running workflows of services. Nucleic Acids Res 34:W729–W732.  https://doi.org/10.1093/nar/gkl320CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Jenkinson AM, Albrecht M, Birney E et al (2008) Integrating biological data–the distributed annotation system. BMC Bioinform 9(Suppl 8):S3.  https://doi.org/10.1186/1471-2105-9-S8-S3CrossRefGoogle Scholar
  33. 33.
    Kalderimis A, Lyne R, Butano D et al (2014) InterMine: extensive web services for modern biology. Nucleic Acids Res 42:W468–W472.  https://doi.org/10.1093/nar/gku301CrossRefGoogle Scholar
  34. 34.
    Kirschner K, Samarajiwa SA, Cairns JM et al (2015) Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53. PLoS Genet 11:e1005053.  https://doi.org/10.1371/journal.pgen.1005053CrossRefGoogle Scholar
  35. 35.
    Landfors M, Philip P, Rydén P, Stenberg P (2011) Normalization of high dimensional genomics data where the distribution of the altered variables is skewed. PLoS ONE 6:e27942.  https://doi.org/10.1371/journal.pone.0027942CrossRefGoogle Scholar
  36. 36.
    Leek JT (2014) svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res.  https://doi.org/10.1093/nar/gku864CrossRefGoogle Scholar
  37. 37.
    Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293.  https://doi.org/10.1126/science.1181369CrossRefGoogle Scholar
  38. 38.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.  https://doi.org/10.1186/s13059-014-0550-8CrossRefGoogle Scholar
  39. 39.
    Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447.  https://doi.org/10.1038/nrm3382CrossRefGoogle Scholar
  40. 40.
    Mammana A, Chung H-R (2015) Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome. Genome Biol 16:151.  https://doi.org/10.1186/s13059-015-0708-zCrossRefGoogle Scholar
  41. 41.
    Martínez-Bartolomé S, Binz P-A, Albar JP (2014) The minimal information about a proteomics experiment (MIAPE) from the proteomics standards initiative. Methods Mol Biol 1072:765–780.  https://doi.org/10.1007/978-1-62703-631-3_53CrossRefGoogle Scholar
  42. 42.
    McQuilton P, Gonzalez-Beltran A, Rocca-Serra P et al (2016) BioSharing: curated and crowd-sourced metadata standards, databases and data policies in the life sciences. Database (Oxford).  https://doi.org/10.1093/database/baw075CrossRefGoogle Scholar
  43. 43.
    Merali Z, Giles J (2005) Databases in peril. Nature 435:1010–1011.  https://doi.org/10.1038/4351010aCrossRefGoogle Scholar
  44. 44.
    Morgan M, Carlson M, Tenenbaum D and Arora S (2017). AnnotationHub: Client to access AnnotationHub resources. R package version 2.6.5Google Scholar
  45. 45.
    National Centre for Biotechnology Information (1988) Bethesda (MD): National Library of Medicine (US), https://www.ncbi.nlm.nih.gov/NLM. Accessed 30 June 2017 (NCBI)
  46. 46.
    OmicTools (2014), https://omictools.com/. Accessed 30 June 2017
  47. 47.
    Pasquier C (2008) Biological data integration using semantic web technologies. Biochimie 90:584–594.  https://doi.org/10.1016/j.biochi.2008.02.007CrossRefGoogle Scholar
  48. 48.
    Pearson H (2001) Biology’s name game. Nature 411:631–632.  https://doi.org/10.1038/35079694CrossRefGoogle Scholar
  49. 49.
    Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6:S22–S32.  https://doi.org/10.1038/nmeth.1371CrossRefGoogle Scholar
  50. 50.
    Pathguide: The pathway resource list (2006) TP53 knowledge based network models. http://www.pathguide.org. Accessed 30 June 2017
  51. 51.
    Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657.  https://doi.org/10.1038/nmeth1068CrossRefGoogle Scholar
  52. 52.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140.  https://doi.org/10.1093/bioinformatics/btp616CrossRefGoogle Scholar
  53. 53.
    Samarajiwa SA (2015) TP53 knowledge-based network models. http://australian-systemsbiology.org/tp53/. Accessed 30 June 2017
  54. 54.
    Samarajiwa SA, Forster S, Auchettl K, Hertzog PJ (2009) INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res 37:D852–D857.  https://doi.org/10.1093/nar/gkn732CrossRefGoogle Scholar
  55. 55.
    Sawyer IA, Dundr M (2017) Chromatin loops and causality loops: the influence of RNA upon spatial nuclear architecture. Chromosoma 1–17.  https://doi.org/10.1007/s00412-017-0632-y
  56. 56.
    Schadt EE, Linderman MD, Sorenson J et al (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11:647–657.  https://doi.org/10.1038/nrg2857CrossRefGoogle Scholar
  57. 57.
    Smedley D, Haider S, Durinck S et al (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43:W589–W598.  https://doi.org/10.1093/nar/gkv350CrossRefGoogle Scholar
  58. 58.
    Stein L (2002) Creating a bioinformatics nation. Nature 417:119–120.  https://doi.org/10.1038/417119aCrossRefGoogle Scholar
  59. 59.
    Stephens ZD, Lee SY, Faghri F et al (2015) Big data: astronomical or genomical? PLoS Biol 13:e1002195.  https://doi.org/10.1371/journal.pbio.1002195CrossRefGoogle Scholar
  60. 60.
    Taylor CF, Field D, Sansone S-A et al (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26:889–896.  https://doi.org/10.1038/nbt.1411CrossRefGoogle Scholar
  61. 61.
    Wang S, Sun H, Ma J et al (2013) Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat Protoc 8:2502–2515.  https://doi.org/10.1038/nprot.2013.150CrossRefGoogle Scholar
  62. 62.
    Yates B, Braschi B, Gray KA et al (2017) Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res 45:D619–D625.  https://doi.org/10.1093/nar/gkw1033CrossRefGoogle Scholar
  63. 63.
    Yu L, Fernandez S, Brock G (2017) Power analysis for RNA-Seq differential expression studies. BMC Bioinformatics 18:234.  https://doi.org/10.1186/s12859-017-1648-2CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shamith A. Samarajiwa
    • 1
    Email author
  • Ioana Olan
    • 2
  • Dóra Bihary
    • 1
  1. 1.MRC Cancer UnitUniversity of CambridgeCambridgeUK
  2. 2.Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK

Personalised recommendations