Modelling of Underwater Robots

  • Gianluca Antonelli
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 123)


In this Chapter the mathematical model of UVMSs is derived. Modeling of rigid bodies moving in a fluid or underwater manipulators has been studied in literature by, among others, [23, 26, 27, 33, 38, 39, 45, 56, 59, 60, 69, 70], where a deeper discussion of specific aspects can be found. In [51], the model of two UVMSs holding the same rigid object is derived. A short introduction to underwater vehicles, without manipulators, thus, is given by [7], while deep discussion may be found in [16, 17, 18]. An compact introduction to modeling of UVMSs can be found in a Chapter of the Handbook of Ocean Engineering [35]. UVMS modeling is also addressed in [40] within the SAUVIM project.


  1. 1.
    Convert Cartesian (ECEF) Coordinates to lat, lon, alt, Mathworks File Exchange, Accessed 28 Nov 2016
  2. 2.
    Latitude, longitude, height to/from ECEF, Department of Oceanography, Naval Postgraduate School, Monterey, CA, Accessed 28 Nov 2016
  3. 3.
    A. Alessandri, M. Caccia, G. Indiveri, G. Veruggio, Application of LS and EKF techniques to the identification of underwater vehicles, in Proceedings of the 1998 IEEE International Conference on Control Applications, 1998, vol. 2 (IEEE, Trieste, I, 1998), pp. 1084–1088Google Scholar
  4. 4.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, On the use of integral control actions for autonomous underwater vehicles, in European Control Conference (P, Sept, Porto, 2001), p. 2001Google Scholar
  5. 5.
    G. Antonelli, S. Chiaverini, N. Sarkar, M. West, Adaptive control of an autonomous underwater vehicle. Experimental results on ODIN, in IEEE International Symposium on Computational Intelligence in Robotics and Automation (Monterey, CA, November 1999), pp. 64–69Google Scholar
  6. 6.
    G. Antonelli, S. Chiaverini, N. Sarkar, M. West, Adaptive control of an autonomous underwater vehicle: experimental results on ODIN. IEEE Trans. Control Syst. Technol. 9(5), 756–765 (2001)CrossRefGoogle Scholar
  7. 7.
    G. Antonelli, T. Fossen, D. Yoerger, Chapter underwater robotics, in Springer Handbook of Robotics, ed. by B. Siciliano, O. Khatib (Springer, Heidelberg, D, 2016)Google Scholar
  8. 8.
    R. Bachmayer, L.L. Whitcomb, M.A. Grosenbaugh, An accurate four-quadrant nonlinear dynamical model for marine thrusters: theory and experimental validation. IEEE J. Ocean. Eng. 25(1), 146–159 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Caccia, G. Indiveri, G. Veruggio, Modeling and identification of open-frame variable configuration unmanned underwater vehicles. IEEE J. Ocean. Eng. 25(2), 227–240 (2000)CrossRefGoogle Scholar
  10. 10.
    M. Calisti, F. Corucci, A. Arienti, C. Laschi, Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot. Bioinspiration Biomim. 10(4), 046012 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Calisti, E. Falotico, C. Laschi, Hopping on uneven terrains with an underwater one-legged robot. IEEE Robot. Autom. Lett. 1(1), 461–468 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Canudas de Wit, E. Olguin Diaz, M. Perrier, Robust nonlinear control of an underwater vehicle/manipulator system with composite dynamics, in Proceedings. 1998 IEEE International Conference on Robotics and Automation, 1998 (IEEE, Leuven, Belgium, 1998), pp. 452–457Google Scholar
  13. 13.
    G. Casalino, M. Caccia, S. Caselli, C. Melchiorri, G. Antonelli, A. Caiti, G. Indiveri, G. Cannata, E. Simetti, S. Torelli, A. Sperindé, F. Wanderlingh, G. Muscolo, M. Bibuli, G. Bruzzone, E. Zereik, A. Odetti, E. Spirandelli, A. Ranieri, J. Aleotti, D.L. Rizzini, F. Oleari, F. Kallasi, G. Palli, U. Scarcia, L. Moriello, E. Cataldi, Underwater intervention robotics: an outline of the Italian national project MARIS. Marine Technol. Soc. J. 50(4), 98–107 (2016)CrossRefGoogle Scholar
  14. 14.
    W.L. Chan, T. Kang, Simultaneous determination of drag coefficient and added mass. IEEE J. Ocean. Eng. 36(3), 422–430 (2011)CrossRefGoogle Scholar
  15. 15.
    S.K. Choi, J. Yuh, Experimental study on a learning control system with bound estimation for underwater robots. Auton. Robots 3(2), 187–194 (1996)CrossRefGoogle Scholar
  16. 16.
    T. Fossen, Guidance and Control of Ocean Vehicles (Chichester New York, 1994)Google Scholar
  17. 17.
    T. Fossen, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (Marine Cybernetics, Trondheim, Norway, 2002)Google Scholar
  18. 18.
    T. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control (Wiley, 2011)Google Scholar
  19. 19.
    T. Fossen, J.G. Balchen, et al.,The NEROV autonomous underwater vehicle, in Proceedings of Conference Oceans 91 (Citeseer, Honolulu, HI, 1991)Google Scholar
  20. 20.
    T.I. Fossen, M. Blanke, Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity. IEEE J. Ocean. Eng. 25(2), 241–255 (2000)CrossRefGoogle Scholar
  21. 21.
    P.J. From, J.T. Gravdahl, K.Y. Pettersen, Vehicle-Manipulator Systems (Springer, 2014)Google Scholar
  22. 22.
    M. Gautier, W. Khalil, Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans. Robot. Autom. 6, 368–373 (1990)CrossRefGoogle Scholar
  23. 23.
    K.R. Goheen, Modeling methods for underwater robotic vehicle dynamics. J. Robot. Syst. 8(3), 295–317 (1991)CrossRefzbMATHGoogle Scholar
  24. 24.
    A. Healey, D. Lienard, Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18(3), 327–339 (1993)CrossRefGoogle Scholar
  25. 25.
    A. Healey, S.M. Rock, S. Cody, D. Miles, J.P. Brown, Toward an improved understanding of thruster dynamics for underwater vehicles. IEEE J. Ocean. Eng. 20(4), 354–361 (1995)CrossRefGoogle Scholar
  26. 26.
    G. Indiveri, Modelling and identification of underwater robotic systems. Comput. Sci. (1998)Google Scholar
  27. 27.
    K. Ioi, K. Itoh, Modelling and simulation of an underwater manipulator. Adv. Robot. 4(4), 303–317 (1989)CrossRefGoogle Scholar
  28. 28.
    J. Jang, J. Han, Y. Choi, W.K. Chung, Development of a small underwater vehicle-manipulator system for tasks in shallow water, in International Conference on Advanced Robotics (2007)Google Scholar
  29. 29.
    C. Karney, Geographiclib, Accessed 28 Nov 2016
  30. 30.
    C. Karney, Algorithms for geodesics. J. Geodesy 87(1), 43–55 (2013)CrossRefGoogle Scholar
  31. 31.
    E. Kelasidi, P. Liljeback, K.Y. Pettersen, J.T. Gravdahl, Innovation in underwater robots: biologically inspired swimming snake robots. IEEE Robot. Autom. Mag. 23(1), 44–62 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Kim, W.K. Chung, Accurate and practical thruster modeling for underwater vehicles. Ocean Eng. 33(5), 566–586 (2006)CrossRefGoogle Scholar
  33. 33.
    J. Kim, W.K. Chung, J. Yuh, Dynamic analysis and two-time scale control for underwater vehicle-manipulator systems, in Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.(IROS 2003), vol. 1 (IEEE, 2003), pp. 577–582Google Scholar
  34. 34.
    J.-Y. Kim, B.-H. Jun, Design of six-legged walking robot, Little Crabster for underwater walking and operation. Adv. Robot. 28(2), 77–89 (2014)CrossRefGoogle Scholar
  35. 35.
    T.W. Kim, G. Marani, J. Yuh, Chapter underwater vehicle manipulators, in Springer Handbook of Ocean Engineering ed. by M.R. Dhanak, N.I. Xiros (Springer, Heidelberg, D, 2016), pp. 407–422Google Scholar
  36. 36.
    T.H. Koh, M.W.S. Lau, E. Low, G. Seet, S. Swei, P.L. Cheng, A study of the control of an underactuated underwater robotic vehicle, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, vol. 2 (IEEE, Lausanne, CH, 2002), pp. 2049–2054Google Scholar
  37. 37.
    M. Kruusmaa, P. Fiorini, W. Megill, M. de Vittorio, O. Akanyeti, F. Visentin, L. Chambers, H. El Daou, M.-C. Fiazza, J. Ježov, Filose for svenning: a flow sensing bioinspired robot. IEEE Robot. Autom. Mag. 21(3), 51–62 (2014)CrossRefGoogle Scholar
  38. 38.
    K.N. Leabourne, S.M. Rock, M.J. Lee, Model development of an underwater manipulator for coordinated arm-vehicle control, in OCEANS’98 Conference Proceedings, vol. 2 (IEEE, 1998), pp. 941–946Google Scholar
  39. 39.
    B. Lévesque, M.J. Richard, Dynamic analysis of a manipulator in a fluid environment. Int. J. Robot. Res. 13(3), 221–231 (1994)CrossRefGoogle Scholar
  40. 40.
    G. Marani, J. Yuh, Introduction to Autonomous Manipulation: Case Study with an Underwater Robot, SAUVIM, vol. 102 (Springer, 2014)Google Scholar
  41. 41.
    S.C. Martin, L.L. Whitcomb, Preliminary experiments in comparative experimental identification of six degree-of-freedom coupled dynamic plant models for underwater robot vehicles, in Proceedings. ICRA’13. IEEE International Conference on Robotics and Automation, 2013 (IEEE, 2013), pp. 2947–2954Google Scholar
  42. 42.
    S.C. Martin, L.L. Whitcomb, Experimental identification of six-degree-of-freedom coupled dynamic plant models for underwater robot vehicles. IEEE J. Ocean. Eng. 39(4), 662–671 (2014)CrossRefGoogle Scholar
  43. 43.
    B. Mazzolai, C. Laschi, Octopus-inspired robotics. Bioinspiration Biomim. 10(3), 030301 (2015)CrossRefGoogle Scholar
  44. 44.
    C.J. McFarland, L.L. Whitcomb, Comparative experimental evaluation of a new adaptive identifier for underwater vehicles, in Proceedings. ICRA’13. IEEE International Conference on Robotics and Automation, 2013 (IEEE, 2013), pp. 4599–4605Google Scholar
  45. 45.
    T.W. McLain, S.M. Rock, Development and experimental validation of an underwater manipulator hydrodynamic model. Int. J. Robot. Res. 17(7), 748–759 (1998)CrossRefGoogle Scholar
  46. 46.
    T.W. McLain, S.M. Rock, M.J. Lee, Experiments in the coordinated control of an underwater arm/vehicle system. Autonom. Robots 3(2), 213–232 (1996)CrossRefGoogle Scholar
  47. 47.
    S. McMillan, D.E. Orin, R.B. McGhee, Efficient dynamic simulation of an unmanned underwater vehicle with a manipulator, in Proceedings. 1994 IEEE International Conference on Robotics and Automation, 1994 (IEEE, San Diego, CA, 1994), pp. 1133–1140Google Scholar
  48. 48.
    J.N. Newman, Marine Hydrodynamics (MIT press, 1977)Google Scholar
  49. 49.
    J. Nie, J. Yuh., E. Kardash, T. Fossen, On-board sensor-based adaptive control of small UUVS in very shallow water. Int. J. Adapt. Control Signal Process. 14(4), 441–452 (2000)Google Scholar
  50. 50.
    E. Olguin Diaz, Modélisation et Commande d’un Système Véhicule/Manipulateur Sous-Marin (in French). Ph.D. thesis, Docteur de l’Institut National Polytechnique de Grenoble (Grenoble, France, 1999)Google Scholar
  51. 51.
    T. Padir, A.J. Koivo. Modeling of two underwater vehicles with manipulators on-board, in IEEE International Conference on Systems, Man and Cybernetics, 2003, vol. 2 (IEEE, 2003), pp. 1359–1364Google Scholar
  52. 52.
    J. Pereira, A. Duncan, System identification of underwater vehicles, in Proceedings of the 2000 International Symposium on Underwater Technology, 2000. UT 00 (IEEE, Tokyo, JP, 2000), pp. 419–424Google Scholar
  53. 53.
    T.K. Podder, Dynamic and control of kinematically redundant underwater vehicle-manipulator systems. Technical Report ASL 98-01, Autonomous Systems Laboratory Technical Report, University of Hawaii (Honolulu, Hawaii, 1998)Google Scholar
  54. 54.
    T.K. Podder, G. Antonelli, N. Sarkar, Fault tolerant control of an autonomous underwater vehicle under thruster redundancy: simulations and experiments, in Proceedings 2000 IEEE International Conference on Robotics and Automation (San Francisco, CA, April 2000), pp. 1251–1256Google Scholar
  55. 55.
    T.K. Podder, G. Antonelli, N. Sarkar, An experimental investigation into the fault-tolerant control of an autonomous underwater vehicle. J. Adv. Robot. 15(5), 501–520 (2001)CrossRefGoogle Scholar
  56. 56.
    M.J. Richard, B. Levesque, Stochastic dynamical modelling of an open-chain manipulator in a fluid environment. Mech. Mach. Theory 31(5), 561–572 (1996)CrossRefGoogle Scholar
  57. 57.
    N. Sarkar, T.K. Podder, G. Antonelli, Fault accommodating thruster force allocation of an AUV considering thruster redundancy and saturation. IEEE Trans. Robot. Autom. 18(2), 223–233 (2002)CrossRefGoogle Scholar
  58. 58.
    T. Sarpkaya, M. Isaacson, Mechanics of Wave Forces on Offshore Structures (Van Nostrand Reinhold Company, New York, 1981)Google Scholar
  59. 59.
    I. Schjølberg, Modeling and control of underwater robotic systems. Ph.D. thesis, Doktor ingeniør degree, Norwegian University of Science and Technology, Trondheim, Norway, 1996Google Scholar
  60. 60.
    I. Schjølberg, T. Fossen. Modelling and control of underwater vehicle-manipulator systems, in Proceedings of 3rd Conference on Marine Craft Maneuvering and Control (Southampton, UK, 1994), pp. 45–57Google Scholar
  61. 61.
    S.W. Shepperd, Quaternion from rotation matrix. J. Guid. Control 1, 223 (1978)zbMATHGoogle Scholar
  62. 62.
    B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control (Springer, 2009)Google Scholar
  63. 63.
    D. Smallwood, L. Whitcomb, Adaptive identification of dynamically positioned underwater robotic vehicles. IEEE Trans. Control Syst. Technol. 11(4), 505–515 (2003)CrossRefGoogle Scholar
  64. 64.
    D.A. Smallwood, L.L. Whitcomb, The effect of model accuracy and thruster saturation on tracking performance of model based controllers for underwater robotic vehicles: Experimental results, in Proceedings. ICRA’02. IEEE International Conference on Robotics and Automation, 2002, vol. 2 (IEEE, Washington, DC, 2002), pp. 1081–1087Google Scholar
  65. 65.
    D.A. Smallwood, L.L. Whitcomb, Adaptive identification of dynamically positioned underwater robotic vehicles. IEEE Trans. Control Syst. Technol. 11(4), 505–515 (2003)CrossRefGoogle Scholar
  66. 66.
    SNAME, Nomenclature for treating the motion of a submerged body through a fluid, Technical and Research Bulletin (1950), pp. 1–5Google Scholar
  67. 67.
    B.L. Stevens, F.L. Lewis, Aircraft Control and Simulation (Wiley, 1992)Google Scholar
  68. 68.
    J. Sverdrup-Thygeson, E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, The underwater swimming manipulator-a bio-inspired AUV, in Autonomous Underwater Vehicles (AUV), 2016 IEEE/OES (IEEE, 2016), pp. 387–395Google Scholar
  69. 69.
    T.J. Tarn, G.A. Shoults, S.P. Yang, A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Auton. Robots 3(2), 269–283 (1996)CrossRefGoogle Scholar
  70. 70.
    T.J. Tarn, S.P. Yang, Modeling and control for underwater robotic manipulators-an example, in Proceedings. 1997 IEEE International Conference on Robotics and Automation, 1997, vol. 3 (IEEE, Albuquerque, NM, 1997), pp. 2166–2171Google Scholar
  71. 71.
    K. Waldron, J. Schmiedeler, Kinematics (Springer International Publishing, 2016), pp. 9–33Google Scholar
  72. 72.
    D. Webb, P. Simonetti, C. Jones, SLOCUM: an underwater glider propelled by environmental energy. IEEE J. Ocean. Eng. 26(4), 447–452 (2001)CrossRefGoogle Scholar
  73. 73.
    L.L. Whitcomb, D. Yoerger, Development, comparison, and preliminary experimental validation of nonlinear dynamic thruster models. IEEE J. Ocean. Eng. 24(4), 481–494 (1999)CrossRefGoogle Scholar
  74. 74.
    D. Yoerger, J.G. Cooke, J.J. Slotine, The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE J. Ocean. Eng. 15(3), 167–178 (1990)CrossRefGoogle Scholar
  75. 75.
    J. Yuh, J. Nie, C.S.G. Lee, Experimental study on adaptive control of underwater robots, in Proceedings. 1999 IEEE International Conference on Robotics and Automation, 1999 (IEEE, 1999), pp. 393–398Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettrica e dell’InformazioneUniversità di Cassino e Lazio MeridionaleCassinoItaly

Personalised recommendations