Skip to main content

Crop Diversification Through a Wider Use of Underutilised Crops: A Strategy to Ensure Food and Nutrition Security in the Face of Climate Change

  • Chapter
  • First Online:
Sustainable Solutions for Food Security

Abstract

Global dependence on only a few crops for food and non-food uses is risky due to the multifaceted challenges that crop production faces. One such challenge is climate change and its effects on food production. Emerging evidence suggests that climate change will cause shifts in crop production areas and yield loss due to more unpredictable and hostile weather patterns. The shrinking list of crops that feed the world, has also been attributed to reported reduced agricultural biodiversity and increased genetic uniformity for yield traits in crop plants. This could lead to crop vulnerability to the dangers of pests and diseases. Part of the solution to these problems lies with crop diversification through a wider use of underutilised and minor crops. Underutilised, minor or neglected crop plants are plant species that are indigenous rather than adapted introductions, which often form a complex part of the culture and diets of the people who grow them. The wider use of underutilised crops would increase agricultural biodiversity (genetic, species and ecosystem) to buffer against crop vulnerability to climate change, pests and diseases and would provide the quality of food and diverse food sources to address both food and nutritional security.

There is evidence to suggest that people are increasingly changing their attitude in favour of crop diversification instead of specialisation on a few major crop species. This chapter provides a background on crop diversification and discusses the potential roles of underutilised crops to address major global concerns such as food and nutrition security, agricultural biodiversity, climate change, environmental degradation and future livelihoods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari, L., Hussain, A., & Rasul, G. (2017). Tapping the potential of neglected and underutilised food crops for sustainable nutrition security in the mountains of Pakistan and Nepal. Sustainability, 9, 291. https://doi.org/10.3390/su9020291.

    Article  Google Scholar 

  • Africa Rice Center (WARDA). (2008). Africa rice trends 2007. Cotonou: Africa Rice Center (WARDA).

    Google Scholar 

  • Alcamo, J., Dronin, N., Endejan, M., Golubev, G., & Kirilenko, A. (2007). A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Global Environmental Change, 7, 429–444.

    Article  Google Scholar 

  • Alhassan, G. A., & Egbe, M. O. (2014). Bambara groundnut/maize intercropping: Effects of planting densities in Southern guinea savanna of Nigeria. African Journal of Agricultural Research, 9(4), 479–486.

    Article  CAS  Google Scholar 

  • Aliyu, S., Massawe, F., & Mayes, S. (2016). Genetic diversity and population structure of Bambara groundnut (Vigna subterranea (L.) Verdc.): Synopsis of the past two decades of analysis and implications for crop improvement programmes. Genetic Resources and Crop Evolution, 63(6), 925–943.

    Article  Google Scholar 

  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment, 74, 19–31.

    Article  Google Scholar 

  • Altieri, M. A. (2009). Agroecology, small farms, and food sovereignty. Monthly Review, 61(3), 102–113.

    Article  Google Scholar 

  • Altieri, M. A., Funes-Monzote, F. R., & Petersen, P. (2012). Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agronomy for Sustainable Development, 32(1), 1–13.

    Article  Google Scholar 

  • Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535–544.

    Article  Google Scholar 

  • Arezki, R., Deininger, K., & Seld, H. (2012). The global land rush. Finance and Development, 49, 46–49.

    Google Scholar 

  • Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Martijn Bezemer, T., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Hefin Jones, T., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D., & Whittaker, J. B. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8(1), 1–16.

    Article  Google Scholar 

  • Berg, A., de Noblet-Ducoudré, N., Sultan, B., Lengaigne, M., & Guimberteau, M. (2013). Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agricultural and Forest Meteorology, 170, 89–102.

    Article  Google Scholar 

  • Bonthala, V. S., Mayes, K., Moreton, J., Blythe, M., Wright, V., May, S. T., Massawe, F., Mayes, S., & Twycross, J. (2016). Identification of gene modules associated with low temperatures response in bambara groundnut by network-based analysis. PLoS One, 11(2), e0148771.

    Article  CAS  Google Scholar 

  • Boody, G., Vondracek, B., Andow, D. A., Krinke, M., Westra, J., Zimmerman, J., & Welle, P. (2009). Multifunctional agriculture in the United States. Bioscience, 55, 27–38.

    Article  Google Scholar 

  • Burchfield, E. K., & Gilligan, J. (2016). Agricultural adaptation to drought in the Sri Lankan dry zone. Applied Geography, 77, 92–100.

    Article  Google Scholar 

  • Bvenura, C., & Afolayan, A. J. (2015). The role of wild vegetables in household food security in South Africa: A review. Food Research International, 76, 1001–1011.

    Article  Google Scholar 

  • Byerlee, D., Stevenson, J., & Villoria, N. (2014). Does intensification slow crop land expansion or encourage deforestation? Global Food Security, 3(2), 92–98.

    Article  Google Scholar 

  • Chaifetz, A., & Jagger, P. (2014). 40 Years of dialogue on food sovereignty: A review and a look ahead. Global Food Security, 3(2), 85–91.

    Article  Google Scholar 

  • Chakraborty, S., Tiedemann, A. V., & Teng, P. S. (2000). Climate change: Potential impact on plant diseases. Environmental Pollution, 108(3), 317–326.

    Article  CAS  Google Scholar 

  • Cheng, A., Mayes, S., Dalle, G., Demissew, S., & Massawe, F. (2017). Diversifying crops for food and nutrition security - a case of teff. Biological Reviews, 92(1), 188–198.

    Article  Google Scholar 

  • Chivenge, P., Mabhaudhi, T., Modi, A. T., & Mafongoya, P. (2015). The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 12, 5685–5711.

    Article  Google Scholar 

  • Cotula, L., Vermeulen, S., Leonard, R., & Keeley, J. (2009). Land grab or development opportunity? Agricultural investment and international land deals in Africa. London; Rome: IIED; FAO, IFAD.

    Google Scholar 

  • Dawson, N., Martin, A., & Sikor, T. (2016). Green revolution in Sub-Saharan Africa: Implications of imposed innovation for the well-being of rural smallholders. World Development, 78, 204–218.

    Article  Google Scholar 

  • Dou, H., & Kister, J. (2016). Research and development on Moringa oleifera - Comparison between academic research and patents. World Patent Information, 47, 21–33.

    Article  Google Scholar 

  • Droogers, P., & Aerts, J. (2005). Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins. Physics and Chemistry of the Earth, Parts A/B/C, 30(6–7), 339–346.

    Article  Google Scholar 

  • Dzama, K. (2016). Is the livestock sector in Southern Africa prepared for climate change. South African Institute of International Affairs Policy Briefing 153. Johannesburg: South African Institute of International Affairs.

    Google Scholar 

  • Eitzinger, J., Stastna, M., & Zalud, Z. (2003). A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agricultural Water Management, 61, 195–217.

    Article  Google Scholar 

  • FAO. (2012). Crop diversification for sustainable diets and nutrition. Rome: Plant Production and Protection Division (AGP).

    Google Scholar 

  • Finckh, M. R., Gacek, E., Goyeau, H., Lannou, C., Merz, U., Mundt, C., et al. (2000). Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie. EDP Sciences, 20(7), 813–837.

    Google Scholar 

  • Frison, E., Smith, I. F., Cherfas, J., & Eyzaguirre, P. B. (2006). Agricultural biodiversity, nutrition, and health: Making a difference to hunger and nutrition in the developing world. Food and Nutrition Bulletin, 27(2), 167–179.

    Article  Google Scholar 

  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  Google Scholar 

  • Govereh, J., & Jayne, T. S. (2003). Cash cropping and food crop productivity: synergies or trade-offs? Agricultural Economics, 28(1), 39–50.

    Article  Google Scholar 

  • Guvele, C. A. (2001). Gains from crop diversification in the Sudan Gezira scheme. Agricultural Systems, 70, 319–333.

    Article  Google Scholar 

  • Hawkesworth, S., Dangour, A. D., Johnston, D., Lock, K., Poole, N., Rushton, J., et al. (2010). Feeding the world healthily: The challenge of measuring the effects of agriculture on health. Philosophical Transactions of the Royal Society, 365, 3083–3097.

    Article  Google Scholar 

  • Heady, E. O. (1952). Diversification in resource allocation and minimization of income variability. Journal of Farm Economics, 34, 482–496.

    Article  Google Scholar 

  • Hochman, Z., Gobbett, D. L., & Horan, H. (2017). Climate trends account for stalled wheat yields in Australia since 1990. Global Change Biology, 23, 2071–2081.

    Article  Google Scholar 

  • Holden, N. M., & Brereton, A. J. (2006). Adaptation of water and nitrogen management of spring barley and potato as a response to possible climate change in Ireland. Agricultural Water Management, 82, 297–317.

    Article  Google Scholar 

  • Jacob, K. D., Charlotte, T. D., Henri, K. K., & Arsene, Z. B. I. (2014). Effect of intercropping bambara groundnut (Vigna subterranea (L.) Verdc) and maize (Zea mays L.) on the yield and the yield component in woodland savannahs of Côte d’Ivoire. International Journal of Agronomy and Agricultural Research, 5(1), 46–55.

    Google Scholar 

  • Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security – A review. Progress in Natural Science, 19, 1665–1674.

    Article  Google Scholar 

  • Karunaratne, A., Azam-Ali, S. N., Al-Shareef, I., Sesay, A., Jorgensen, S. T., & Crout, N. M. J. (2010). Modelling the canopy development of Bambara groundnut. Agricultural and Forest Meteorology, 7-8, 1007–1015.

    Article  Google Scholar 

  • Karunaratne, A., Azam-Ali, S. N., & Crout, N. M. J. (2011). BAMGRO: A simple model to simulate the response of Bambara groundnut to abiotic stress. Experimental Agriculture, 47(3), 489–507.

    Article  Google Scholar 

  • Karunaratne, A. S., Walker, S., & Azam-Ali, S. N. (2015). Assessing the productivity and resource-use efficiency of underutilised crops: Towards an integrative system. Agricultural Water Management, 147, 129–134.

    Article  Google Scholar 

  • Kassie, M., Shiferaw, B., & Muricho, G. (2011). Agricultural technology, crop income, and poverty alleviation in Uganda. World Development, 39(10), 1784–1795.

    Article  Google Scholar 

  • Khoury, C. K., Bjorkman, A. D., Dempewolf, H., Ramirez-Villegas, J., Guarino, L., Jarvis, J., et al. (2014). Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences, 111(11), 4001–4006.

    Article  CAS  Google Scholar 

  • Kijima, Y., Otsuka, K., & Sserunkuuma, D. (2011). An Inquiry into Constraints on a Green Revolution in Sub-Saharan Africa: The Case of NERICA Rice in Uganda. World Development, 39(1), 77–86.

    Article  Google Scholar 

  • Kremen, C., Iles, A., & Bacon, C. (2012). Diversified farming systems: An agroecological, systems-based alternative to modern industrial agriculture. Ecology and Society, 17(4), 44.

    Google Scholar 

  • Leakey, R. R. B., & Asaah, E. K. (2013). Underutilised species as the backbone of multifunctional agriculture – The next wave of crop domestication. Acta Horticulturae, 979, 293–310.

    Article  Google Scholar 

  • Lin, B. B., Perfecto, I., & Vandermeer, J. (2008). Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. Bioscience, 58(9), 847–854.

    Article  Google Scholar 

  • Lin, B. B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. Bioscience, 61, 183–193.

    Article  Google Scholar 

  • Mabhaudhi, T., & Modi, A. T. (2013). Intercropping taro and Bambara groundnut. Sustainable Agriculture Reviews, 13, 275–290.

    Article  Google Scholar 

  • Maitra, S., Ghosh, D. C., Sounda, G., Jana, P. K., & Roy, D. K. (2000). Productivity, competition and economics of intercropping legumes in finger millet (Eleusine coracana) at different fertility levels. Indian Journal of Agricultural Science, 70(12), 824–828.

    Google Scholar 

  • Makate, C., Wang, R., Makate, M., & Mango, N. (2016). Crop diversification and livelihoods of smallholder farmers in Zimbabwe: Adaptive management for environmental change. Springerplus, 5, 1135. https://doi.org/10.1186/s40064-016-2802-4.

    Article  Google Scholar 

  • Massawe, F. J., Mayes, S., & Cheng, A. (2016). Crop diversity: An unexploited treasure trove for food security. Trends in Plant Science, 21(5), 365–368.

    Article  CAS  Google Scholar 

  • Mayes, S., Massawe, F. J., Alderson, P. G., Roberts, J. A., Azam-Ali, S. N., & Hermann, M. (2012). The potential for underutilized crops to improve security of food production. Journal of Experimental Botany, 63(3), 1075–1079.

    Article  CAS  Google Scholar 

  • McCord, P. F., Cox, M., Schmitt-Harsh, M., & Evans, T. (2015). Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy, 42, 738–750.

    Article  Google Scholar 

  • McIntyre, B. D., Herren, H. R., Wakhungu, J., & Watson, R. T. (2009). International assessment of agricultural knowledge, science and technology for development (IAASTD): Synthesis report with executive summary: A synthesis of the global and sub-global IAASTD reports. Washington, DC: IAASTD.

    Google Scholar 

  • Michler, J. D., & Josephson, A. L. (2017). To specialize or diversify: agricultural diversity and poverty dynamics in Ethiopia. World Development, 89, 214–226.

    Article  Google Scholar 

  • Midega, C. A. O., Khan, Z. R., Amudavi, D. M., Pittchar, J., & Pickett, J. A. (2010). Integrated management of Striga hermonthica and cereal stemborers in finger millet (Eleusine coracana (L.) Gaertn.) through intercropping with Desmodium intortum. International Journal of Pest Management, 56(2), 145–151.

    Article  Google Scholar 

  • Midgley, S., & Methner, N. (2016). Climate adaptation readiness for agriculture: Drought lessons from the Western Cape, South Africa. African Institute of International Affairs Policy Briefing 154. Johannesburg: South African Institute of International Affairs.

    Google Scholar 

  • National Academy of Sciences. (1972). Genetic vulnerability of major crops. Washington, DC: NAS.

    Google Scholar 

  • Nguyen, H. Q. (2017). Analyzing the economies of crop diversification in rural Vietnam using an input distance function. Agricultural Systems, 153, 148–156.

    Article  Google Scholar 

  • Njeru, E. M. (2013). Crop diversification: A potential strategy to mitigate food insecurity by smallholders in sub-Saharan Africa. Journal of Agriculture, Food Systems, and Community Development, 3, 63–69.

    Google Scholar 

  • Onyango, A. O. (2016). Finger millet: Food security crop in the arid and semi-arid lands (ASALs) of Kenya. World Environment, 6(2), 62–70.

    Google Scholar 

  • Orr, A. (2000). Green Gold’?: Burley tobacco, smallholder agriculture, and poverty alleviation in Malawi. World Development, 28, 347–363.

    Article  Google Scholar 

  • Patterson, D. T., Westbrook, J. K., Joyce†, R. J. V., Lingren, P. D., & Rogasik, J. (1999) Climatic Change, 43(4), 711–727.

    Article  CAS  Google Scholar 

  • Pellegrini, L., & Tasciotti, L. (2014). Crop diversification, dietary diversity and agricultural income: Empirical evidence from eight developing countries. Canadian Journal of Development Studies, 35, 211–277.

    Article  Google Scholar 

  • Perfecto, I., Vandermeer, J. H., Bautista, G. L., Nuñez, G. I., Greenberg, R., Bichier, P., & Langridge, S. (2004). Greater predation in shaded coffee farms: The role of resident Neotropical birds. Ecology, 85, 2677–2681.

    Article  Google Scholar 

  • Prasanna, R. P. I. R., Bulakulama, S. W. G. K., & Kuruppuge, R. H. (2011). Factors affecting farmers’ higher grain from paddy marketing: A case study on paddy farmers in North central province, Sri Lanka. International Journal of Agricultural Management and Development, 2, 57–69.

    Google Scholar 

  • Rahman, S. (2009). Whether crop diversification is a desired strategy for agricultural growth in Bangladesh? Food Policy, 34, 340–349.

    Article  Google Scholar 

  • Ray, K. D., Ramankutty, N., Mueller, N. D., West, P. C., & Foley, J. A. (2012). Recent patterns of crop yield growth and stagnation. Nature Communications, 3, 1293. https://doi.org/10.1038/ncomms2296.

    Article  CAS  Google Scholar 

  • Rosenzweig, C., & Parry, M. L. (1994). Potential impact of climate change on world food supply. Nature, 367, 133–138.

    Article  Google Scholar 

  • Saenz, M., & Thompson, E. (2017). Gender and policy roles in farm household diversification in Zambia. World Development, 89, 152–169.

    Article  Google Scholar 

  • Samberg, L. H., Gerber, J. S., Ramankutty, N., Herrero, M., & West, P. C. (2016). Subnational distribution of average farm size and smallholder contributions to global food production. Environmental Research Letters, 11(12), 124010. https://doi.org/10.1088/1748-9326/11/12/124010.

    Article  Google Scholar 

  • Scherm, H., & Yang, X. B. (1995). Interannual variations in wheat rust development in China and the United States in relation to the El Nino/Southern Oscillation. Phytopathology, 85, 970–976.

    Article  Google Scholar 

  • Seck, P. A., Tollens, E., Wopereis, M. C. S., Diagne, A., & Bamba, I. (2010). Rising trends and variability of rice prices: Threats and opportunities for sub-Saharan Africa. Food Policy, 35, 403–411.

    Article  Google Scholar 

  • Senger, I., Borges, J. A. R., & Machado, J. A. D. (2017). Using the theory of planned behavior to understand the intention of small farmers in diversifying their agricultural production. Journal of Rural Studies, 49, 32–40.

    Article  Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). Amsterdam: Academic Press, Elsevier.

    Google Scholar 

  • Sserunkuuma, D. (2008). Assessment of NERICA training impact. A study report prepared for the Japan international cooperation agency (JICA). Tokyo: JICA.

    Google Scholar 

  • Tadele, Z. (2017). Raising crop productivity in Africa through intensification. Agronomy, 7(1), 22.

    Article  Google Scholar 

  • Tadele, Z., & Assefa, K. (2012). Increasing food production in Africa by boosting the productivity of understudied crops. Agronomy, 2(4), 240–283.

    Article  Google Scholar 

  • Taffesse, A. S., Dorosh, P., & Asrat, S. (2012). Crop production in Ethiopia: Regional patterns and trends. Ethiopia strategy support program (ESSP II). Washington, DC: International Food Policy Research Institute.

    Google Scholar 

  • Thilakarathna, M., & Raizada, M. (2015). A review of nutrient management studies involving finger millet in the semi-arid tropics of. Asia and Africa. Agronomy, 5(3), 262–290.

    CAS  Google Scholar 

  • Touma, D., Ashfaq, M., Nayak, M., Kao, S., & Diffenbaugh, N. (2015). A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526, 196–207.

    Article  Google Scholar 

  • UN. (2016). Sustainable development knowledge platform. Retrieved from https://sustainabledevelopment.un.org/?page=view&nr=164&type=230&menu=2059.

  • Van den Berg, M. M., Hengsdijk, H., Wolf, J., Ittersum, M. K. V., Guanghuo, W., & Roetter, R. P. (2007). The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang province, China. Agricultural Systems, 94, 841–850.

    Article  Google Scholar 

  • Vandermeer, J., van Noordwijk, M., Anderson, J., Ong, C., & Perfecto, I. (1998). Global change and multi-species agroecosystems: Concepts and issues. Agriculture, Ecosystems and Environment, 67, 1–22.

    Article  Google Scholar 

  • Weltin, M., Zasada, I., Franke, C., Piorr, A., Raggi, M., & Viaggi, D. (2017). Analysing behavioural differences of farm households: An example of income diversification strategies based on European farm survey data. Land Use Policy, 62, 172–184.

    Article  Google Scholar 

  • Wheeler, T., & von Braun, J. (2013). Climate change impacts on global food security. Science, 341, 508–513.

    Article  CAS  Google Scholar 

  • Wilhite, D. A., & Vanyarkho, O. (2000). Drought: Pervasive impacts of a creeping phenomenon. In D. A. Wilhite (Ed.), Drought: A global assessment (pp. 245–255).

    Google Scholar 

  • World Bank. (2008). World development report 2008: Agriculture for development. Washington, DC: World Bank.

    Book  Google Scholar 

  • Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences, 96, 1463–1468.

    Article  CAS  Google Scholar 

  • Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., et al. (2000). Genetic diversity and disease control in rice. Nature, 406, 718–722.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Massawe .

Editor information

Editors and Affiliations

Glossary

Crop diversification

Cultivating more than one variety of crops belonging to the same or different species within a region, using multiple cropping, agroforestry and/or crop rotation systems, with diversity evident in form (e.g. genetic, species, structural), function (e.g. pest suppression, increased production) and scale (temporal and spatial) (Lin 2011; Makate et al. 2016).

Agroforestry

The incorporation of trees or shrubs within a cropping system as part of crop diversification to maximise the benefits of interactions between the various biological components.

Crop rotation

A temporal approach to crop diversification by systematically varying the crops planted on a given plot between seasons, for example cultivating maize in summer and peas in the following season.

Multiple cropping

A spatial approach to crop diversification by systematically cultivating two or more crops in a given plot within the same season, for example, cultivating maize and peas simultaneously on the same piece of land.

Intensification

Increase in the productivity of land as determined by the value of agricultural output, which can be market-driven (e.g. production of higher value crops) or technologically driven (e.g. better cropping practices) (Byerlee et al. 2014).

Specialisation

Focus on a single activity within a farming system, with the activity providing at least two-thirds of the farm income.

Food sovereignty

“The right of a nation or region to produce, distribute or consume food with appropriate productive and cultural diversity” (Altieri 2009).

Vulnerability

A measure of a community’s exposure to stresses (social and/or environmental), sensitivity to the stresses, and ability to adapt (McCord et al. 2015).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mustafa, M.A., Mayes, S., Massawe, F. (2019). Crop Diversification Through a Wider Use of Underutilised Crops: A Strategy to Ensure Food and Nutrition Security in the Face of Climate Change. In: Sarkar, A., Sensarma, S., vanLoon, G. (eds) Sustainable Solutions for Food Security . Springer, Cham. https://doi.org/10.1007/978-3-319-77878-5_7

Download citation

Publish with us

Policies and ethics