Skip to main content

Climate-Resilient Future Crop: Development of C4 Rice

  • Chapter
  • First Online:
Book cover Sustainable Solutions for Food Security

Abstract

Rice is the most important crop in the world. It is a staple food for more than half of the human population and a primary food source for the world’s poorest people. Asia currently accounts for 90% of global rice production but it will need to increase this by 50% within the next 30 years. By this time the region will be home to nearly 90% of the global population increase and will likely be experiencing extreme climatic conditions. Agriculture will be challenged by diminishing water resources, reduced nutrient inputs and an increase in abiotic stresses. Rice yield increases have already stagnated and so a new paradigm is needed to meet these future challenges. Most crop plants, like rice and wheat, have a simple and less efficient photosynthetic mechanism (C3 photosynthesis) that as a consequence results in considerable loss of water through stomatal pores on their leaves that open widely to let in more carbon dioxide. They also make a large amount of photosynthetic protein to maximise their photosynthetic rate that requires a large investment of nitrogen and hence fertiliser application. However, a few plants have evolved a more efficient C4 photosynthetic pathway that greatly alleviates these problems. The installation of a C4 photosynthetic pathway into major crops like rice could potentially increase yields by 50%, double the water-use efficiency and reduce fertiliser use by 40%. This is because plants with a C4 photosynthetic pathway concentrate CO2 within the leaf prior to photosynthetic fixation leading to increased photosynthetic efficiency and large reductions in the requirement for scarce resources like water and nitrogen (fertiliser). These modifications would be particularly advantageous in future climate scenarios where water scarcity and global temperature are predicted to increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351–372.

    Article  Google Scholar 

  • Bräutigam, A., Hofmann-Benning, S., & Weber, A. P. M. (2008). Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes. Plant Physiology, 148(1), 568–579.

    Article  Google Scholar 

  • Brutnell, T. P., et al. (2010). Setaria viridis: A model for C4 photosynthesis. The Plant Cell, 22(8), 2537–2544.

    Article  CAS  Google Scholar 

  • von Caemmerer, S., Quick, W. P., & Furbank, R. T. (2012). The development of C4 rice: Current progress and future challenges. Science (New York, N.Y.), 336(6089), 1671–1672.

    Article  Google Scholar 

  • Edwards, E. J., Smith, S. A., & Crossing Environmental Thresholds. (2010). The origins of C 4 grasslands: Integrating evolutionary and ecosystem science. Science, 328(April), 587–590.

    Article  CAS  Google Scholar 

  • Evans, J. R., & von Caemmerer, S. (2000). Would C4 rice produce more biomass than C3 rice? In J. E. Sheehy, P. L. Mitchell, & B. Hardy (Eds.), Redesigning rice photosynthesis to increase yield (pp. 53–72). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Furbank, R. T. (2011). Evolution of the C 4 photosynthetic mechanism: Are there really three C 4 acid decarboxylation types? Journal of Experimental Botany, 62(9), 3103–3108.

    Article  CAS  Google Scholar 

  • Ghannoum, O., Evans, J. R., & von Caemmerer, S. (2011). Nitrogen and water use efficiency in C4 plants. In A. S. Raghavendra & R. F. Sage (Eds.), C4 photosynthesis and related CO2 concentrating mechanisms (pp. 129–146). Dordrecht: Springer.

    Google Scholar 

  • Hatch, M. D. (1999). C4 photosynthesis: A historical overview. In R. Sage & R. Monson (Eds.), C4 plant biology (pp. 175–196). New York, NY: Academic Press.

    Google Scholar 

  • Hatch, M. D., Kagawa, T., & Craig, S. (1975). Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features. Australian Journal of Plant Physiology, 2, 111–128.

    CAS  Google Scholar 

  • Hibberd, J. M., & Covshoff, S. (2010). The regulation of gene expression required for C 4 photosynthesis. Annual Review of Plant Biology, 61, 181–207.

    Article  CAS  Google Scholar 

  • Hibberd, J. M., Sheehy, J. E., & Langdale, J. A. (2008). Using C4 photosynthesis to increase the yield of rice—Rationale and feasibility. Current Opinion in Plant Biology, 11(2), 228–231.

    Article  CAS  Google Scholar 

  • Hsing, Y. I., et al. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Molecular Biology, 63(3), 351–364.

    Article  CAS  Google Scholar 

  • Jenkins, C. L. D., Furbank, R. T., & Hatch, M. D. (1989). Mechanism of C4 photosynthesis - A model describing the inorganic carbon pool in bundle sheath-cells. Plant Physiology, 91(4), 1372–1381.

    Article  CAS  Google Scholar 

  • Jeong, D. H., et al. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiology, 130(4), 1636–1644.

    Article  CAS  Google Scholar 

  • Kajala, K., et al. (2011). Strategies for engineering a two-celled C4 photosynthetic pathway into rice. Journal of Experimental Botany, 62(9), 3001–3010.

    Article  CAS  Google Scholar 

  • Kanai, R., & Edwards, G. E. (2001). The biochemistry of C4 photosynthesis. In C4 plant biology (pp. 49–87). New York, NY: Academic Press.

    Google Scholar 

  • Kocacinar, F., McKown, A. D., Sage, T. L., & Sage, R. F. (2008). Photosynthetic pathway influences xylem structure and function in flaveria (Asteraceae). Plant, Cell and Environment, 31(10), 1363–1376.

    Article  CAS  Google Scholar 

  • Ku, S.-b., & Edwards, G. E. (1977). Oxygen inhibition of photosynthesis. Plant Physiology, 59, 986–990.

    Article  CAS  Google Scholar 

  • Leegood, R. C. (2002). C4 photosynthesis: Principles of CO2 concentration and prospects for its introduction into C3 plants. Journal of Experimental Botany, 53(369), 581–590.

    Article  CAS  Google Scholar 

  • Leegood, R. C. (2013). Strategies for engineering C 4 photosynthesis. Journal of Plant Physiology, 170(4), 378–388.

    Article  CAS  Google Scholar 

  • Lin, H., et al. (2016). Targeted knockdown of GDCH in rice leads to a photorespiratory-deficient phenotype useful as a building block for C4 rice. Plant and Cell Physiology, 57(5), 919–932.

    Article  CAS  Google Scholar 

  • Majeran, W., Cai, Y., Sun, Q., & van Wijk, K. J. (2005). The plant cell functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell, 17, 3111.

    Article  CAS  Google Scholar 

  • Majeran, W., et al. (2008). Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Molecular & Cellular Proteomics : MCP, 7(9), 1609–1638.

    Article  CAS  Google Scholar 

  • Majeran, W., et al. (2010). Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. The Plant Cell, 22(11), 3509–3542.

    Article  CAS  Google Scholar 

  • Manandhar-Shrestha, K., et al. (2013). Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in c4-related metabolite fluxes and development. Frontiers in Plant Science, 4(March), 65.

    CAS  Google Scholar 

  • Mitchell, P. L., & Sheehy, J. E. (2006). Surveying the possible pathways to C 4 rice. In Charting new pathways to C4 rice (pp. 399–412). Los Banos: International Rice Research Institute.

    Google Scholar 

  • Miyao, M., Masumoto, C., Miyazawa, S. I., & Fukayama, H. (2011). Lessons from engineering a single-cell C 4 photosynthetic pathway into rice. Journal of Experimental Botany, 62(9), 3021–3029.

    Article  CAS  Google Scholar 

  • Monteith, J. L. (1978). Reassessment of maximum growth rates for C3 and C4 crops. Experimental Agriculture, 14, 1–5.

    Article  CAS  Google Scholar 

  • Morgan, J. a., et al. (2011). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476(7359), 202–205.

    Article  CAS  Google Scholar 

  • Osborn, H. L., et al. (2016). Effects of reduced carbonic anhydrase activity on co2 assimilation rates in setaria viridis: A transgenic analysis. Journal of Experimental Botany, 68(2), erw357.

    Google Scholar 

  • Peng, S., et al. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 9971–9975.

    Article  CAS  Google Scholar 

  • Rizal, G., et al. (2015). Two forward genetic screens for vein density mutants in sorghum converge on a cytochrome p450 gene in the brassinosteroid pathway. Plant Journal, 84(2), 257–266.

    Article  CAS  Google Scholar 

  • Sage, R. F. (1999). Why C4 photosynthesis? In R. F. Sage & R. K. Monson (Eds.), C4 plant biology (pp. 3–16). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Sage, R. F. (2004). The evolution of C 4 photosynthesis. New Phytologist, 161(2), 341–370.

    Article  CAS  Google Scholar 

  • Sage, R. F., & Zhu, X. G. (2011). Exploiting the engine of C 4 photosynthesis. Journal of Experimental Botany, 62(9), 2989–3000.

    Article  CAS  Google Scholar 

  • Sage, R. F., Christin, P. A., & Edwards, E. J. (2011). The C 4 plant lineages of planet earth. Journal of Experimental Botany, 62(9), 3155–3169.

    Article  CAS  Google Scholar 

  • Sheehy, J. E., et al. (2007). How the rice crop works and why it needs a new engine. In J. E. Sheehy, P. L. Mitchell, & B. Hardy (Eds.), Charting new pathways to C4 rice (pp. 3–26). Los Banos: International Rice Research Institute.

    Google Scholar 

  • Still, C. J., Berry, J. A., James Collatz, G., & DeFries, R. S. (2003). Global distribution of C 3 and C 4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles, 17(1), 6-1–6-14.

    Article  Google Scholar 

  • Taniguchi, Y., Ohkawa, H., Masumoto, C., Fukuda, T., Tamai, T., Lee, K., Sudoh, S., Tsuchida, H., Sasaki, H., Fukayama, H., & Miyao, M. (2008). Overproduction of C4 photosynthetic enzymes in transgenic rice plants: An approach to introduce the C4-like photosynthetic pathway into rice. Journal of Experimental Botany, 59(7), 1799–1809.

    Article  Google Scholar 

  • Taylor, S. H., et al. (2010). Ecophysiological traits in C3 and C4 grasses: A phylogenetically controlled screening experiment. New Phytologist, 185, 780.

    Article  CAS  Google Scholar 

  • Wan, S., et al. (2009). Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Molecular Biology, 69(1–2), 69–80.

    Article  CAS  Google Scholar 

  • Wang, P., Kelly, S., Fouracre, J. P., & Langdale, J. A. (2013). Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 kranz anatomy. Plant Journal, 75(4), 656–670.

    Article  CAS  Google Scholar 

  • Weber, A. P. M., & von Caemmerer, S. (2010). Plastid transport and metabolism of C3 and C4 plants — Comparative analysis and possible biotechnological exploitation. Current Opinion in Plant Biology, 13(3), 256–264.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, H.C., Coe, R.A., Quick, W.P., Bandyopadhyay, A. (2019). Climate-Resilient Future Crop: Development of C4 Rice. In: Sarkar, A., Sensarma, S., vanLoon, G. (eds) Sustainable Solutions for Food Security . Springer, Cham. https://doi.org/10.1007/978-3-319-77878-5_6

Download citation

Publish with us

Policies and ethics