Advertisement

Adaption to Climate Change: Climate Adaptive Breeding of Maize, Wheat and Rice

  • Dave Watson
Chapter

Abstract

The advent of climate change, especially the greater frequency of temperature extremes and both erratic and extreme precipitation, will increasingly challenge the ability of maize, wheat and rice agri-food systems to meet growing global demand for food and feed. The challenge to agri-food systems is threefold. First, increasing temperature (especially extreme temperature events) and reduced or erratic rainfall limits the ability of these crops to produce a harvestable product, especially in rain-fed and underdeveloped agri-food systems. Second, industrial agri-food systems are extremely energy intensive and, both directly and indirectly, produce a considerable amount of greenhouse gases, which further exacerbates climate change. Third, changes in temperature and rainfall will require adjustment to cropping geographies and integration of more drought and heat tolerant crops, especially in the predicted climate change hotspots. The good news is that there is significant genetic variation for heat and drought/submergence tolerance in the global maize, wheat and rice gene banks. Either through the application of conventional breeding or the use of new breeding techniques, this genetic diversity offers a way to ameliorate most of the immediate climate change challenges. However, in order to ensure a continuous pipeline of climate-resilient staple crops, it is essential to maintain adequate funding for blue sky and upstream crop breeding, and capacity building of small to medium-sized (SME) seed companies, especially in sub-Saharan Africa, South Asia and Central America.

References

  1. Abdoulaye, T., Sanogo, D., Langyintuo, A., Bamire, S. A., & Olanrewaju, A. (2009). Assessing the constraints affecting production and deployment of maize seed in DTMA countries of West Africa. Ibadan: IITA.Google Scholar
  2. AGRA. (2014). Africa agriculture status report: Climate change and smallholder agriculture in sub-Saharan Africa (No. 2). Nairobi: Alliance for a Green Revolution in Africa, AGRA.Google Scholar
  3. Ali, J., Xu, J.-L., Gao, Y.-M., Ma, X.-F., Meng, L.-J., Wang, Y., et al. (2017). Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). PLoS One, 12(3), e0172515.  https://doi.org/10.1371/journal.pone.0172515.CrossRefGoogle Scholar
  4. Angaji, S., Septiningsih, E. M., Mackill, D. J., & Ismail, A. M. (2010). QTLs associated with tolerance of anaerobic conditions during germination in rice (Oryzasativa L.). Euphytica, 172, 159–168.  https://doi.org/10.1007/s10681-009-0014-5.CrossRefGoogle Scholar
  5. Anjos e Silva, S. D., Maria, J., Claudia, F. L., Antonio, C. O., & Jose, F. (2007). Inheritance of tolerance to flooded soils in maize. Crop Breeding and Applied Biotechnology., 7, 165–172.CrossRefGoogle Scholar
  6. Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science, 19, 52–61.CrossRefGoogle Scholar
  7. Asaduzzaman M., Ringler C., Thurlow J., & Alam S. (2010). Investing in crop agriculture in Bangladesh for higher growth and productivity, and adaptation to climate change. In Bangladesh Food Security Investment Forum, May 26–27, 2010, Dhaka. Retrieved from www.bids.org.bd/ifpri/investing6.pdf.
  8. Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28, 169–183.  https://doi.org/10.1016/j.biotechadv.2009.11.005.CrossRefGoogle Scholar
  9. Badu-Apraku, B., Hunter, R. B., & Tollenaar, M. (1983). Effect of temperature during grain filling on whole plant and grain yield in maize (Zea mays L.). Canadian Journal of Plant Science, 63, 357–363.CrossRefGoogle Scholar
  10. Bänziger, M., Mugo, S., & Edmeades, G. O. (2000). Breeding for drought tolerance in tropical maize: Conventional approaches and challenges to molecular approaches. In J. M. Ribaut & D. Poland (Eds.), Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments (pp. 69–72). Mexico D.F.: CIMMYT.Google Scholar
  11. Bänziger, M., & Diallo, A. O. (2001). Progress in developing drought and stress tolerant maize cultivars in eastern and southern Africa. In Seventh Eastern and Southern Africa Regional Maize Conference, February 11–15, 2001, pp. 189–194.Google Scholar
  12. Bänziger, M., & Diallo, A. (2004). Progress in developing drought and N stress tolerant maize cultivars for eastern and southern Africa. In D. K. Friesen & A. F. E. Palmer (Eds.), Integrated approaches to higher maize productivity in the new millennium. Proceedings of the 7th Eastern and Southern Africa Regional Maize Conference, Nariobi, Kenya, 5–11 February, 2002 (pp. 189–194). Nairobi: CIMMYT and KARI.Google Scholar
  13. Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240–244.CrossRefGoogle Scholar
  14. Biswas, J. K., & Yamauchi, M. (1997). Mechanism of seedling establishment of direct-seeded rice (Oryza sativa L.) under lowland conditions. Botanical Bulletin Academia Sinica, 38, 29–32.Google Scholar
  15. Bolaños, J., & Edmeades, G. O. (1993a). Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass, and radiation utilization. Field Crops Research, 31, 233–252.CrossRefGoogle Scholar
  16. Bolaños, J., & Edmeades, G. O. (1993b). Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behaviour. Field Crops Research, 31, 253–268.CrossRefGoogle Scholar
  17. Bolaños, J., & Edmeades, G. O. (1996). The importance of the anthesis-silking interval inbreeding for drought tolerance in tropical maize. Field Crops Research, 48, 65–80.CrossRefGoogle Scholar
  18. Boyer, J., & Westgate, M. (2004). Grain yields with limited water. Journal of Experimental Botany, 55, 2385–2394.  https://doi.org/10.1093/jxb/erh219.CrossRefGoogle Scholar
  19. Braun, H., Atlin, G., & Payne, T. (2010). Multi-location testing as a tool to identify plant response to global climate change. In Climate change and crop production (pp. 115–138). Wallingford: CABI.CrossRefGoogle Scholar
  20. Brown, D. M. (1977). Response of maize to environmental temperatures: A review. In Agrometeorology of the maize (corn) crop (Vol. 481, pp. 15–26). Geneva: World Meteorological Organization.Google Scholar
  21. Bruce, W. B., Edmeades, G. O., & Barker, T. C. (2002). Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany, 53(366), 13–25.CrossRefGoogle Scholar
  22. Burke, M. B., Lobell, D. B., & Guarino, L. (2009). Shifts in African crop climates by 2050, and the implications for crop improvements and genetic resources conservation. Global Environmental Change, 19, 317–325.CrossRefGoogle Scholar
  23. Burney, J. A., Davis, S. J., & Lobell, D. B. (2010). Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 107, 12052–12057.  https://doi.org/10.1073/pnas.0914216107.CrossRefGoogle Scholar
  24. Cairns, J. E., Sonder, K., Zaidi, P. H., Verhulst, N., Mahuku, G., Babu, R., Nair, S. K., Das, B., Govaerts, B., Vinayan, M. T., Rashid, Z., Noor, J. J., Devi, P., San Vicente, F., & Prasanna, B. M. (2012). Maize production in a changing climate: Impacts, adaptation, and mitigation strategies. Advances in Agronomy, 114, 1–57.CrossRefGoogle Scholar
  25. Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., MacRobert, J. F., Thierfelder, C., & Prasanna, B. M. (2013). Adapting maize production to climate change in sub-Saharan Africa. Food Security, 5, 345–360.  https://doi.org/10.1007/s12571-013-0256-x.CrossRefGoogle Scholar
  26. Caemmerer, S. V., Quick, P. W., & Furbank, R. T. (2012). The development of C4 rice: Current progress and future challenges. Science, 336, 1671–1672.CrossRefGoogle Scholar
  27. Cavatassi, R., Lipper, L., & Narloch, U. (2011). Modern variety adoption and risk management in drought prone areas: Insights from the sorghum farmers of eastern Ethiopia. Agricultural Economics, 42, 279–292.CrossRefGoogle Scholar
  28. CGIAR (Consultative Group on International Agricultural Research). (2009). CGIAR & climate change. Global climate change: Can agriculture cope? Mapping the Menace of Global Climate Change (CGIAR at COP15—Dec 2009). Retrieved November 4, 2012, from http://cgiar.bio-mirror.cn/pdf/cc_mappingthemenace.pdf.
  29. Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D., & Collins, M. (2010). Increased crop failure due to climate change: Assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters, 5(3), 034012 (8 pp).  https://doi.org/10.1088/1748-9326/5/3/034012.CrossRefGoogle Scholar
  30. Christiansen-Weniger, C. (1996). Endophytic establishment of Azorhizobium caulinodans through auxin-induced root tumors on rice (Oryza sativa L.). Biology and Fertility of Soils, 21, 293–302.CrossRefGoogle Scholar
  31. Cicchino, M., Rattalino Edreria, J. I., Uribelarrea, M., & Otegui, M. E. (2011). Heat stress in field-grown maize: Response of physiological determinants of grain yield. Crop Science, 50, 1438–1448.CrossRefGoogle Scholar
  32. Collier, P., Conway, G., & Venables, T. (2008). Climate change and Africa. Oxford Review of Economic Policy, 24, 337–353.CrossRefGoogle Scholar
  33. Colmer, T. D., Armstrong, W., Greenway, H., Ismail, A. M., Kirk, G. J. D., & Atwell, B. J. (2014). Physiological mechanisms of flooding tolerance of rice: Transient complete submergence and prolonged standing water. In U. Lüttge, W. Beyschlag, & J. Cushman (Eds.), Progress in botany (Vol. 75). Berlin; Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-38797-5_9.CrossRefGoogle Scholar
  34. Cooper, M., Messina, C. D., Podlich, D., Radu Totir, L., Baumgarten, A., & Hausmann, N. J. (2014). Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction. Crop & Pasture Science, 65, 311–336.  https://doi.org/10.1071/CP14007.CrossRefGoogle Scholar
  35. Cooper, P. J. M., Cappiello, S., Vermeulen, S. J., Campbell, B. M., Zougmoré, R., & Kinyangi, J. (2013). Large-scale implementation of adaptation and mitigation actions in agriculture. CCAFS Working paper, No 50. Copenhagen: CCAFS.Google Scholar
  36. Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2, 491–496.CrossRefGoogle Scholar
  37. Cossani, C. M., & Reynolds, M. P. (2012). Physiological traits for improving heat tolerance in wheat. Plant Physiology, 160, 1710–1718.CrossRefGoogle Scholar
  38. Dai, Z., Ku, M. S. B., & Edwards, G. E. (1993). C4 photosynthesis: The CO2 concentrating mechanism and photorespiration. Plant Physiology, 103(1), 83–90.CrossRefGoogle Scholar
  39. Dale, R. F. (1983). Temperature perturbations in the mid-western and southeastern United States important for corn production. In C. D. Raper & P. J. Kramer (Eds.), Crop reactions to water and temperature stresses in humid and temperate climates (pp. 21–32). Boulder, CO: Westview Press.Google Scholar
  40. Deryng, D., Conway, D., Ramankutty, N., Price, J., & Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 9(3), 034011 (13 pp).CrossRefGoogle Scholar
  41. Diab, A., Amin, A., Badr, S., Teixeira da Silva, J. A., Van, P. T., Abdelgawad, B., Adawy, S., & Sammour, R. (2012). Identification and functional validation of expressed sequence tags (ESTs) preferentially expressed in response to drought stress in durum wheat. International Journal of Plant Breeding, 6, 14–20.Google Scholar
  42. Dixon, R., Cheng, Q., Shen, G., Day, A., & Dowson-Day, M. (1997). Nif gene transfer and expression in chloroplasts: Prospects and problems. Plant and Soil, 194, 193–203.CrossRefGoogle Scholar
  43. Driever, S. M., & Kromdijk, J. (2013). Will C3 crops enhanced with the C4 CO2-concentrating mechanism live up to their full potential (yield)? Journal of Experimental Botany, 64(13), 3925–3935.  https://doi.org/10.1093/jxb/ert103.CrossRefGoogle Scholar
  44. Dupuis, I., & Dumas, C. (1990). Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive tissues. Plant Physiology, 94, 665–670.CrossRefGoogle Scholar
  45. Dusenbury, M. P., Engel, R. E., Miller, P. R., Lemke, R. L., & Wallander, R. (2008). Nitrous oxide emissions from a northern great plains soil as influenced by nitrogen management and cropping systems. Journal of Environmental Quality, 37, 542–550.  https://doi.org/10.2134/jeq2006.0395.CrossRefGoogle Scholar
  46. Easterling, W., Aggarwal, P., Batima, P., et al. (2007). Food fibre and forest products. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van Linden, & C. E. Hansen (Eds.), Impacts, adaptation and vulnerability’ contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change (pp. 273–313). Cambridge: Cambridge University Press.Google Scholar
  47. Edmeades, G. O., Bänziger, M., Cortes, M., & Ortega, A. (1997). From stress-tolerant populations to hybrids: The role of source germplasm. In G. O. Edmeades, M. Bänziger, H. R. Mickelson, & C. B. Peña-Valdivia (Eds.), Developing drought and low-N tolerant maize (pp. 263–273). Mexico D.F.: CIMMYT.Google Scholar
  48. Edmeades, G. O., Bolanos, J., Lafitte, H. R., Rajaram, S., Pfeiffer, W., & Fischer, R. A. (1999). Traditional approaches to breeding for drought resistance in cereals. In F. W. G. Baker (Ed.), Drought resistance in cereals (pp. 27–52). Wallingford: ICSU and CABI.Google Scholar
  49. Edmeades, G., Bänziger, M., Campos, H., & Schussler, J. (2006). Improving tolerance to abiotic stresses in staple crops: A random or planned process? (Vol. 2008, pp. 293–309). London: Blackwell Publishing.Google Scholar
  50. Edmeades, G. (2008). Drought tolerance in maize: An emerging reality. In J. Clive (Ed.), Global status of commercialized Biotech/GM Crops. ISAAA Brief No. 39. Ithaca, NY: ISAAA.Google Scholar
  51. Fedoroff, N. V., Battisti, D. S., Beachy, R. N., et al. (2010). Radically rethinking agriculture for the 21st century. Science, 327, 833–834.CrossRefGoogle Scholar
  52. Fischer, R. A., & Edmeades, G. O. (2010). Breeding and cereal yield progress. Crop Science, 50, S85–S98.CrossRefGoogle Scholar
  53. Fischer, R. A., Byerlee, D., & Edmeades, G. O. (2014). Crop yields and global food security: Will yield increase continue to feed the world? Canberra, ACT: Australian Centre for International Agricultural Research. Retrieved from http://aciar.gov.au/publication/mn158.Google Scholar
  54. Fisher, M., Abate, T., Lunduka, R. W., Asnake, W., Alemayehu, Y., & Madulu, R. B. (2015). Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa. Climatic Change, 133, 283–299.  https://doi.org/10.1007/s10584-015-1459-2.CrossRefGoogle Scholar
  55. Frey, F. P., Urbany, C., Hüttel, B., Reinhardt, R., & Stich, B. (2015). Genome-wide expression profiling and phenotypic evaluation of European maize in-breds at seedling stage in response to heat stress. BMC Genomics, 16, 123.  https://doi.org/10.1186/s12864-015-1282-1.CrossRefGoogle Scholar
  56. Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., & Holland, E. A. (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153–226.CrossRefGoogle Scholar
  57. Galloway, J. N., Townsend, A. R., Willem, J., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Luiz, A., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889–892.CrossRefGoogle Scholar
  58. Gan, Y., Liang, C., Wang, X., & McConkey, B. (2011). Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crops Research, 122, 199–206.  https://doi.org/10.1016/j.fcr.2011.03.020.CrossRefGoogle Scholar
  59. Gantar, M., & Elhai, J. (1999). Colonization of wheat para-nodules by the N2-fixing cyanobacterium Nostoc sp. strain 2S9B. The New Phytologist, 141, 373–379.CrossRefGoogle Scholar
  60. Glendining, M. J., Dailey, A. G., Williams, A. G., van Evert, F. K., Goulding, K. W. T., & Whitmore, A. P. (2009). Is it possible to increase the sustainability of arable and ruminant agriculture by reducing inputs? Agricultural Systems, 99, 117–125.CrossRefGoogle Scholar
  61. Goglio, P., Grant, B. B., Smith, W. N., Desjardins, R. L., Worth, D. E., Zentner, R., & Malhi, S. S. (2014). Impact of management strategies on the global warming potential at the cropping system level. Science of the Total Environment, 490, 921–933.  https://doi.org/10.1016/j.scitotenv.2014.05.070.CrossRefGoogle Scholar
  62. Gong, F. P., Yang, L., Tai, F. J., Hu, X. L., & Wang, W. (2014). “Omics” of maize stress response for sustainable food production: Opportunities and challenges. OMICS, 18, 711–729.  https://doi.org/10.1089/omi.2014.0125.CrossRefGoogle Scholar
  63. Gong, F. P., Wu, X., Zhang, H., Chen, Y., & Wang, W. (2015). Making better maize plants for sustainable grain production in a changing climate. Frontiers in Plant Science, 6, 835.  https://doi.org/10.3389/fpls.2015.00835.CrossRefGoogle Scholar
  64. Gourdji, S. M., Mathews, K. L., Reynolds, M., Crossa, J., & Lobell, D. B. (2013). An assessment of wheat yield sensitivity and breeding gains in hot environments. Proceedings of the Royal Society B, 280, 20122190.CrossRefGoogle Scholar
  65. Hellin, J., Shiferaw, B., Cairns, J. E., Reynolds, M., Ortiz-Monasterio, I., Bänziger, M., et al. (2012). Climate change and food security in the developing world: Potential of maize and wheat research to expand options for adaptation and mitigation. Journal of Development and Agricultural Economics, 4, 311–321.Google Scholar
  66. Hossain, A., & Teixeira da Silva, J. A. (2013). Wheat production in Bangladesh: Its future in the light of global warming. AoB Plants, 5, pls042.  https://doi.org/10.1093/aobpla/pls042.CrossRefGoogle Scholar
  67. Hu, H., & Xiong, L. (2014). Genetic engineering and breeding of drought resistant crops. Annual Review of Plant Biology, 65, 715–741.  https://doi.org/10.1146/annurev-arplant-050213-040000. PMID: 24313844.CrossRefGoogle Scholar
  68. Hu, R. F., Meng, E. C., Zhang, S. H., & Sciences, C. A. O. (2004). Prioritization for maize research and development in China. Scientia Agricultura Sinica, 37, 781–787.Google Scholar
  69. Hu, X. L., Wu, L. J., Zhao, F. Y., Zhang, D. Y., Wang, W., & Zhu, G. (2015a). Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Frontiers in Plant Science, 6, 298.  https://doi.org/10.3389/fpls.2015.00298.CrossRefGoogle Scholar
  70. Hu, X. L., Yang, Y. F., Gong, F. P., Zhang, D. Y., Wang, W., & Wu, L. (2015b). Proteins HSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). Journal of Proteomics, 115, 81–92.  https://doi.org/10.1016/j.jprot.2014.12.009.CrossRefGoogle Scholar
  71. Huang, H., Mølle, I. M., & Song, S. Q. (2012). Proteomics of desiccation tolerance during development and germination of maize embryos. Journal of Proteomics, 75, 1247–1262.  https://doi.org/10.1016/j.jprot.2011.10.036.CrossRefGoogle Scholar
  72. Ignaciuk, A., & Mason-D’Croz, D. (2014). Modelling adaptation to climate change in agriculture. In OECD Food, Agriculture and Fisheries Papers, No. 70. Paris: OECD Publishing.Google Scholar
  73. Iniguez, A. L., Domg, Y., & Triplett, E. W. (2004). Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Molecular Plant-Microbe Interactions, 17, 1078–1085.CrossRefGoogle Scholar
  74. IPCC. (2007). Fourth assessment report: Synthesis. Retrieved November 17, 2007, from http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf.
  75. Ismail, A. M., Ella, E. S., Vergara, G. V., & Mackill, D. J. (2009). Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryzasativa). Annals of Botany, 103, 197–209.  https://doi.org/10.1093/aob/mcn211.CrossRefGoogle Scholar
  76. Ismail, A. M., Singh, U. S., Singh, S., Dar, M. H., & Mackill, D. J. (2013). The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rain-fed lowland areas in Asia. Field Crops Research, 152, 83–93.CrossRefGoogle Scholar
  77. Ismail, A. M., & Mackill, D. J. (2013). Response to flooding: Submergence tolerance in rice. In M. Jackson, B. Ford-Lloyd, & M. Parry (Eds.), Plant genetic responses and climate change, Chapter 15. London: CABI International.Google Scholar
  78. Jackson, M. B., & Ram, P. C. (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 91, 227–241.  https://doi.org/10.1093/aob/mcf242.CrossRefGoogle Scholar
  79. Jagadish, S. V. K., Muthurajan, R., Oane, R., Wheeler, T. R., Heuer, S., Bennett, J., et al. (2010). Physiological and proteonomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). Journal of Experimental Botany, 61, 143–156.CrossRefGoogle Scholar
  80. Kirk, G. J. D., Greenway, B. J., Atwell, B. J., Ismail, A. M., & Colmer, T. D. (2014). Adaptation of rice to flooded soils. In U. Lüttge, W. Beyschlag, & J. Cushman (Eds.), Progress in botany (Vol. 75). Berlin; Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-38797-5_8.CrossRefGoogle Scholar
  81. Kostandini, G., Bradford, F. M., Omamo, S. W., & Wood, S. (2009). Ex-ante analysis of the benefits of transgenic drought tolerance research on cereal crops in low-income countries. Agricultural Economics, 40, 477–492.CrossRefGoogle Scholar
  82. Kostandini, G., La Rovere, R., & Abdoulaye, T. (2013). Potential impacts of increasing average yields and reducing maize yield variability in Africa. Food Policy, 43, 213–226.  https://doi.org/10.1016/j.foodpol.2013.09.007.CrossRefGoogle Scholar
  83. Langyintuo, A. S., Mwangi, W., Diallo, A., MacRobert, J., Dixon, J., & Bänziger, M. (2010). Challenges of the maize seed industry in eastern and southern Africa: A compelling case for private–public intervention to promote growth. Food Policy, 35, 323–331.CrossRefGoogle Scholar
  84. Li, X. H. (2002). Genetic diversity of drought tolerance at flowering time in elite maize germplasm. Acta Agronomica Sinica, 28, 595–600.Google Scholar
  85. Lillemo, M., van Ginkel, M., Trethowan, R. M., Hernandez, E., & Crossa, J. (2005). Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Science, 45, 2443–2453.CrossRefGoogle Scholar
  86. Liu, C., Cutforth, H., Chai, Q., & Gan, Y. (2016). Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agronomy for Sustainable Development, 36, 69.  https://doi.org/10.1007/s13593-016-0404-8.CrossRefGoogle Scholar
  87. Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation and needs for food security in 2030. Science, 319, 607–610.CrossRefGoogle Scholar
  88. Lobell, D. B., Bänziger, M., Magorokosho, C., & Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1, 42–45.  https://doi.org/10.1038/nclimate1043.CrossRefGoogle Scholar
  89. Lobell, D. B., Roberts, M. J., Schlenker, W., Braun, N., & Little, B. B. (2014). Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science, 344, 516–519.  https://doi.org/10.1126/science.1251423.CrossRefGoogle Scholar
  90. Lopes, M. S., Dreisigacker, S., Peña, R. J., Sukumaran, S., & Reynolds, M. P. (2014). Genetic characterization of the Wheat Association Mapping Initiative (WAMI) panel for dissection of complex traits in spring wheat. TAG: Theorectial and Applied Genetics, 128, 453–464.CrossRefGoogle Scholar
  91. Mackill, D. J., Ismail, A. M., Singh, U. S., Labios, R. V., & Paris, T. R. (2012). Development and rapid adoption of submergence-tolerant (Sub1)ricev arieties. Advances in Agronomy, 115, 303–356.  https://doi.org/10.1016/B978-0-12-394276-0.00006-8.CrossRefGoogle Scholar
  92. Mano, Y., Muraki, M., Komatsu, T., Fujimori, M., Akiyama, F., & Takamizo, T. (2002). Varietal difference in pre-germination flooding tolerance and waterlogging tolerance at the seedling stage in maize inbred lines. Crop Science, 71(3), 361–367.CrossRefGoogle Scholar
  93. Mano, Y., & Omori, F. (2007). (2007). Breeding for flooding tolerant maize using “teosinte” as a germplasm resource. Plant Roots, 1, 17–21.CrossRefGoogle Scholar
  94. Masuka, B., Atlin, G. N., Olsen, M., Magorokosho, C., Labuschagne, M., Crossa, J., Bänziger, M., Pixley, K. V., Vivek, B. S., von Biljon, A., Macrobert, J., Alvarado, G., Prasanna, B. M., Makumbi, D., Tarekegne, A., Das, B., Zaman-Allah, M., & Cairns, J. E. (2017). Gains in maize genetic improvement in eastern and Southern Africa: I. CIMMYT hybrid breeding pipeline. Crop Science, 57, 1–12.  https://doi.org/10.2135/cropsci2016.05.0343.CrossRefGoogle Scholar
  95. McMichael, P. (2016). Commentary: Food regime for thought. The Journal of Peasant Studies, 43(3), 648–670.  https://doi.org/10.1080/03066150.2016.1143816.CrossRefGoogle Scholar
  96. Norton, J. M., & Stark, J. M. (2011). Regulation and measurement of nitrification in terrestrial systems. In M. G. Klotz (Ed.), Methods in enzymology: Research on nitrification and related processes (Vol. 486, Part A, pp. 343–368). San Diego, CA: Elsevier Academic Press.CrossRefGoogle Scholar
  97. OECD-FAO. (2009). Agricultural outlook 2009–2018. Retrieved November 4, 2012, from www.agrioutlook.org.
  98. Oldroyd, G. E. D., & Dixon, R. (2014). Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology, 26, 19–24.CrossRefGoogle Scholar
  99. Olivares, J., Bedmar, E. J., & Sanjuán, J. (2013). Biological nitrogen fixation in the context of global change. Molecular Plant-Microbe Interactions, 26(5), 486–494.  https://doi.org/10.1094/MPMI-12-12-0293-CR.CrossRefGoogle Scholar
  100. O’Sullivan, C. A., Fillery, I. R. P., Roper, M. M., & Richards, R. A. (2016). Identification of several wheat landraces with biological nitrification inhibition capacity. Plant and Soil, 404, 61–74.  https://doi.org/10.1007/s11104-016-2822-4.CrossRefGoogle Scholar
  101. Peng, S., Laza, R. C., Khush, G. S., Sanico, A. L., Visperas, R. M., & Garcia, F. E. (1998). Transpiration efficiencies of indica and improved tropical japonica rice grown under irrigated conditions. Euphytica, 103, 103–108.CrossRefGoogle Scholar
  102. Pinto, R. S., Reynolds, M. P., Mathews, K. L., McIntyre, C. L., Olivares-Villegas, J. J., & Chapman, S. C. (2010). Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical and Applied Genetics, 121, 1001–1021.CrossRefGoogle Scholar
  103. Prasanna, B. M., Chaikam, V., & Mahuku, G. (2012). Doubled haploid technology in maize breeding: Theory and practice. Mexico, D.F.: CIMMYT.Google Scholar
  104. Pray, C., Nagarajan, L., Li, L., Huang, J., Hu, R., Selvaraj, K. N., Napasintuwong, O., & Babu, R. C. (2011). Potential impact of biotechnology on adaption of agriculture to climate change: The case of drought tolerant rice breeding in Asia. Sustainability, 3, 1723–1741.  https://doi.org/10.3390/su3101723.CrossRefGoogle Scholar
  105. Ramasamy, C., Selvaraj, K. N., Norton, G. W., & Vijayragahavan, V. K. (2007). Economic and environmental benefits and costs of transgenic crops: An ex-ante assessment. Coimbatore: Tamil Nadu Agricultural University Press.Google Scholar
  106. Rathore, T. R., Warsi, M. Z. K., Lothrop, J. E., & Singh, N. N. (1996). Production of maize under excess soil moisture (water-logging) conditions. In 1st Asian Regional Maize Workshop, PAU (Punjab Agricultural University), Ludhiana, February 10–12, 1996, pp. 56–63.Google Scholar
  107. Rathore, T. R., Warsi, M. Z. K., Zaidi, P. H., & Singh, N. N. (1997). Waterlogging problem for maize production in Asian region. TAMNET News Letter., 4, 13–14.Google Scholar
  108. Raun, W. R., & Johnson, G. V. (1999). Improving nitrogen use efficiency for cereal production. Agronomy Journal, 91, 357–363.CrossRefGoogle Scholar
  109. Reynolds, M. P., Tattaris, M., Cossani, C. M., Ellis, M., Yamaguchi-Shinozaki, K., & Saint, P. C. (2015). Exploring genetic resources to increase adaptation of wheat to climate change. In Y. Ogihara, S. Takumi, & H. Handa (Eds.), Advances in wheat genetics: From genome to field. Tokyo: Springer.Google Scholar
  110. RICE. (2016). RICE CRP proposal. Las Banjos: IRRI.Google Scholar
  111. Rogers, C., & Oldroyd, G. E. D. (2014). Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany, 65(8), 1939–1946.  https://doi.org/10.1093/jxb/eru098.CrossRefGoogle Scholar
  112. Rosegrant, M. W., & Agcaoili, M. (2010). Global food demand, supply, and price prospects to 2010. Washington, DC: International Food Policy Research Institute.Google Scholar
  113. Sage, R. F. (2004). The evolution of C4 photosynthesis. The New Phytologist, 161(2), 341–370.CrossRefGoogle Scholar
  114. Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., & Dobermann, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108, 1–13.CrossRefGoogle Scholar
  115. Setter, T. L., Ellis, M., Laureles, C. V., Ella, E. S., Senadhira, D., & Mishra, S. B. (1997). Physiology and genetics of submergence tolerance in rice. Annals of Botany, 79, 67–77.  https://doi.org/10.1093/oxfordjournals.aob.a010308.CrossRefGoogle Scholar
  116. Shaw, R. H. (1977). Water use and requirements of maize – A review. Agrometeorology of the maize (corn) crop (Vol. 480, pp. 119–134). Geneva: Secretariat of the World Meteorological Organization.Google Scholar
  117. Shaw, R. H. (1983). Estimates of yield reductions in corn by water and temperature stress. In C. D. Raper & P. J. Kramer (Eds.), Crop reactions to water and temperature stresses in humid and temperate climates (pp. 49–65). Boulder, CO: Westview Press.Google Scholar
  118. Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3, 307–327.CrossRefGoogle Scholar
  119. Singh, P. R., Jain, G. P., Singh, N., Pandey, P. K., & Sharma, M. K. (2016a). Effect of recurrent selection on drought tolerance and related morpho-physiological traits in bread wheat. PLoS One, 11(6), e0156869.  https://doi.org/10.1371/journal.pone.0156869.CrossRefGoogle Scholar
  120. Singh, R., Singh, Y., Xalaxo, S., Verulkar, S., Yadav, N., Singh, S., Singh, N., Prasad, K. S. N., Kondayya, K., Rao, P. V. R., Rani, M. G., Anuradha, T., Suraynarayana, Y., Sharma, P. C., Krishnamurthy, S. L., Sharma, S. K., Dwivedi, J. L., Singh, A. K., Singh, P. K., Nilanjay, Singh, N. K., Kumar, R., Chetia, S. K., Ahmad, T., Rai, M., Perraju, P., Pande, A., Singh, D. N., Mandal, N. P., Reddy, J. N., Singh, O. N., Katara, J. L., Marandi, B., Swain, P., Sarkar, R. K., Singh, D. P., Mohapatra, T., Padmawathi, G., Ram, T., Kathiresan, R. M., Paramsivam, K., Nadarajan, S., Thirumeni, S., Nagarajan, M., Singh, A. K., Vikram, P., Kumar, A., Septiningsih, E., Singh, U. S., Ismail, A. M., Mackill, D., & Singh, N. K. (2016b). From QTL to variety: Harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Science, 242, 278–287.  https://doi.org/10.1016/j.plantsci.2015.08.008. PMID: 26566845.CrossRefGoogle Scholar
  121. Singh, S., Mackill, D. J., & Ismail, A. M. (2009). Responses of Sub1rice introgression lines to submergence in the field: Yield and grain quality. Field Crops Research, 113, 12–23.  https://doi.org/10.1016/j.fcr.2009.04.003.CrossRefGoogle Scholar
  122. Singh, S., Mackill, D. J., & Ismail, A. M. (2011). Tolerance of longer-term partial stagnant flooding is independent of the SUB1 locus in rice. Field Crops Research, 121, 311–323.  https://doi.org/10.1016/j.fcr.2010.12.021.CrossRefGoogle Scholar
  123. Smil, V. (1999). Nitrogen in crop production: An account of global flows. Global Biogeochemical Cycles, 13, 647–662.CrossRefGoogle Scholar
  124. Subbarao, G. V., Rondon, M., Ito, O., Ishikawa, T., Rao, I. M., Nakahara, K., Lascano, C., & Berry, W. L. (2007a). Biological nitrification inhibition (BNI) - Is it a widespread phenomenon? Plant and Soil, 294, 5–18.CrossRefGoogle Scholar
  125. Subbarao, G. V., Tomohiro, B., Masahiro, K., Osamu, I., Samejima, H., Wang, H. Y., Pearse, S. J., Gopalakrishnan, S., Nakahara, K., Hossain, A., Tsujimoto, H., & Berry, W. L. (2007b). Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming? Plant and Soil, 299, 55–64.CrossRefGoogle Scholar
  126. Subbaraoa, G. V., Arangob, J., Masahiroc, K., Hooperd, A. M., Yoshihashia, T., Andoa, Y., Nakaharaa, K., Deshpandee, S., Ortiz-Monasterio, I., Ishitanib, M., Peters, M., Chirindab, N., Wollenbergf, L., & Latag, J. C. (2017). Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology. Plant Science, 262, 165.  https://doi.org/10.1016/j.plantsci.2017.05.004.CrossRefGoogle Scholar
  127. Tanaka, J. P., Nardi, P., & Wissuwa, M. (2010). Nitrification inhibition activity, a novel trait in root exudates of rice. AoB Plants, 2010, plq014.Google Scholar
  128. Tehripour, F., Hertel, T. W., Gopalakrishnan, B. N., Sahin, S., & Escurra, J. J. (2015). Agricultural production, irrigation, climate change and water scarcity in India. In 2015 AAEA & WAEA Joint Annual Meeting, July 26–28, San Francisco, 2015, California. No:205591. Agricultural and Applied Economics Association & Western Agricultural Economics Association.Google Scholar
  129. Temme, K., Zhao, D., & Voigt, C. A. (2012). Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proceedings of the National Academy of Sciences U S A, 109, 7085–7090.CrossRefGoogle Scholar
  130. Tesfaye, K., Sonder, K., Cairns, J. E., Magorokoshod, k., Tarekegne, A., Kassie, G. T., Getaneh, F., Abdoulaye, T., Abate, T., & Erenstein, O. (2016). Targeting drought-tolerant maize varieties in Southern Africa: A geospatial crop modeling approach using big data. International Food and Agribusiness Management Review Special Issue, 19(A), 2016.Google Scholar
  131. Thornton, P. K., Jones, P. G., Alagarswamy, G., & Andersen, J. (2009). Spatial variation of crop yield response to climate change in East Africa. Global Environmental Change, 19, 54–65.CrossRefGoogle Scholar
  132. Timsina J, Jat ML, Majumdar K. (2010). Rice-maize systems of South Asia: Current status, future prospects and research priorities for nutrient management Plant Soil. 335(1): 65–82.Google Scholar
  133. Tripp, R., & Rohrbach, D. (2001). Policies for African seed enterprise development. Food Policy, 26, 147–161.CrossRefGoogle Scholar
  134. Tuong, T. P. (1999). Productive water use in rice production: Opportunities and limitations. Journal of Crop Production, 2, 241–264.CrossRefGoogle Scholar
  135. Waddington, S. R., Elahi, N. E., & Khatun, F. (2006). The expansion of rice-maize systems in Bangladesh. In The Symposium on Emerging Rice-Maize Systems in Asia. ASA-CSSA-SSSA, International Annual Meetings, Indianapolis, IN, USA, November 12–16, 2006.Google Scholar
  136. Westengen, O. T., & Brysting, A. K. (2014). Crop adaptation to climate change in the semi-arid zone in Tanzania: The role of genetic resources and seed systems. Agriculture and Food Security, 3, 3.CrossRefGoogle Scholar
  137. Xoconostle-Cázares, B., Ramírez-Ortega, F. A., Flores-Elenes, L., & Ruiz-Medrano, R. (2010). Drought tolerance in crop plants. American Journal of Plant Physiology, 5(5), 241–256.CrossRefGoogle Scholar
  138. Yadvinder-Singh, Kukal, S. S., Jat, M. L., & Sidhu, H. S. (2014). Improving water productivity of wheat-based cropping systems in South Asia for sustained productivity. Advances in Agronomy, 127, 157–258.  https://doi.org/10.1016/B978-0-12-800131-8.00004-2.CrossRefGoogle Scholar
  139. Yamauchi, M., Aguilar, A. M., Vaughan, D. A., & Seshu, D. V. (1993). Rice (Oryzasativa L.) germplasm suitable for direct sowing under flooded soil surface. Euphytica, 67, 177–184.  https://doi.org/10.1007/BF00040619.CrossRefGoogle Scholar
  140. Yanni, Y. G., & Dazzo, F. B. (2010). Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant and Soil, 336, 129–142.CrossRefGoogle Scholar
  141. Yin, H., Chen, C. J., Yang, J., Weston, D. J., & Chen, J. G. (2014). Functional genomics of drought tolerance in bioenergy crops. Crit Rev Plant Sci, 33, 205–224.  https://doi.org/10.1080/07352689.2014.870417.CrossRefGoogle Scholar
  142. Zaidi, P. H., Rafique, S., Singh, N. N., & Srinivasan, G. (2002). Excess moisture tolerance in maize - Progress and challenges. In Proc. 8th Asian Regional Maize Workshop, Bangkok, Thailand, August 5–9, 2002. pp. 398–412.Google Scholar
  143. Zaidi, P. H., Rafique, S., Rai, P. K., Singh, N. N., & Srinivasan, G. (2004). Tolerance to excess moisture in maize (Zea mays L.): Susceptible crop stages and identification of tolerant genotypes. Field Crops Research, 90(2–3), 189–202.CrossRefGoogle Scholar
  144. Zaidi, P. H., Maniselvan, P., Sultana, R., Yadav, M., Singh, R. P., Singh, S. B., et al. (2007). Importance of secondary traits in improvement of maize (Zea mays L.) for enhancing tolerance to excessive soil moisture stress. Cereal Research Communications, 35, 1427–1435.CrossRefGoogle Scholar
  145. Zaidi, P. H., Rashid, Z., Vinayan, M. T., Almeida, G. D., Phagna, R. K., & Babu, R. (2015). QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. PLoS One, 10(4), e0124350.  https://doi.org/10.1371/journal.pone.0124350.CrossRefGoogle Scholar
  146. Zakir, H., Subbarao, G. V., Pearse, S. J., Gopalakrishnan, S., Ito, O., Ishikawa, T., Kawano, N., Nakahara, K., Yoshihashi, T., Ono, H., & Yoshida, M. (2008). Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytologist, 180, 442–451.CrossRefGoogle Scholar
  147. Zaman-Hussain, M., Van Loocke, A., Siebers, M. H., Ruiz-Vera, U., Markelz, R. J. C., & Leakey, A. D. B. (2013). Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Global Change Biology, 19, 1572.  https://doi.org/10.1111/gcb.12155.CrossRefGoogle Scholar
  148. Zeman, A. M., Tchan, Y. T., Elmerich, C., & Kennedy, L. R. (1992). Nitrogenase activity in wheat seedlings bearing para-nodules induced by 2,4-dichlorophenoxyacetic acid (2,4-D) and inoculated with Azospirillum. Research in Microbiology, 143, 847–855.CrossRefGoogle Scholar
  149. Zhang, L., Richards, R. A., Condon, A. G., Liu, D. C., & Rebetzke, G. J. (2015). Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.). Journal of Experimental Botany, 66, 1215.  https://doi.org/10.1093/jxb/eru468.CrossRefGoogle Scholar
  150. Zhou, M. Z. (2010). Improvement of plant waterlogging tolerance. In S. Mancuso & S. Shabala (Eds.), Waterlogging signaling and tolerance in plants (pp. 267–285). Heidelberg: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dave Watson
    • 1
  1. 1.CGIAR Research Program on MaizeInternational Maize and Wheat Improvement Center (CIMMYT)TexcocoMéxico

Personalised recommendations