Skip to main content

Transmission of 3D Video Content

  • Chapter
  • First Online:
3D Visual Content Creation, Coding and Delivery

Abstract

This chapter describes different video transport technologies that support the existing 3D video formats, such as frame-compatible side-by-side and multi-view video plus depth. Particular emphasis is given to the DVB systems (terrestrial, satellite, and cable) and IP transport, focusing HTTP/TCP streaming, adaptive HTTP streaming, RTP/UDP streaming, P2P Networks, and Information-Centric Networking-ICN. Hybrid transport technologies, combining broadcast and broadband networks for video delivery are also addressed. The chapter highlights important aspects of 3D video transmission over wireless networks, together with their benefits and limitations in the delivery of this type of content. Recent research results are summarized for different delivery systems and transport technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ETSI EN 300 744: Digital video broadcasting (DVB); framing structure, channel coding and modulation for digital terrestrial television. V.1.6.1, Sept 2008

    Google Scholar 

  2. ETSI EN 302 755: Digital video broadcasting (DVB); frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system (DVB-T2). V1.1.1, Sept 2009

    Google Scholar 

  3. ETSI EN 300 421: Digital video broadcasting (DVB); framing structure, channel coding and modulation for 11/12 GHz satellite services. V.1.1.2, Aug 1997

    Google Scholar 

  4. ETSI EN 302 307: Digital video broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2). V.1.2.1, Aug 2009

    Google Scholar 

  5. EN 300 429: Digital video broadcasting (DVB); framing structure, channel coding and modulation for cable systems. V.1.2.1, Apr 1998

    Google Scholar 

  6. ETSI EN 302 769: Digital video broadcasting (DVB); frame structure channel coding and modulation for a second generation digital transmission system for cable systems (DVB-C2). V.1.1.1, Oct 2010

    Google Scholar 

  7. ETSI TS 101 547-2: DVB plano-stereoscopic 3DTV; Part 2: frame compatible plano-stereoscopic 3DTV. V1.2.1, Nov 2012

    Google Scholar 

  8. ISO/IEC 13818-1: Information technology—generic coding of moving pictures and associated audio—Part 1: Systems, July 2015

    Google Scholar 

  9. ETSI TS 101 154 (V1.8.1): Digital video broadcasting (DVB); specification for the use of video and audio coding in broadcasting applications based on the MPEG-2 transport stream, July 2007

    Google Scholar 

  10. Stott, J.H.: The how and why of COFDM. EBU Techn. Rev. 278 (1998)

    Google Scholar 

  11. Dumic, E., Sisul, G., Grgic, S.: Evaluation of transmission channel models based on simulations and measurements in real channels. Frequenz 66(1–2), 41–54 (2012)

    Google Scholar 

  12. Reimers, U: Digital Video Broadcasting. Springer, Berlin (2001)

    Google Scholar 

  13. http://beam.to/datasets

  14. DVB fact sheet: DVB-T2—2nd generation terrestrial broadcasting. DVB Project Office, Apr 2012

    Google Scholar 

  15. Richardson, T., Urbanke, R.: The renaissance of Gallager’s low-density parity-check codes. IEEE Commun. Mag. 41, 126–131 (2003)

    Article  Google Scholar 

  16. ETSI EN 302 307-2: Digital video broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications: Part 2: DVB-S2 extensions (DVB-S2X). V1.1.1, Mar 2014

    Google Scholar 

  17. ETSI TS 101 547-1: DVB plano-stereoscopic 3DTV; Part 1: Overview of the multipart, V1.2.1, Dec 2015

    Google Scholar 

  18. ETSI TS 101 547-2: DVB plano-stereoscopic 3DTV; Part 2: frame compatible plano-stereoscopic 3DTV, V1.2.1, Nov 2012

    Google Scholar 

  19. ETSI TS 101 547-3: DVB plano-stereoscopic 3DTV; Part 3: HDTV service compatible plano-stereoscopic 3DTV, V1.1.1, Nov 2012

    Google Scholar 

  20. ETSI TS 101 547-4: DVB plano-stereoscopic 3DTV; Part 4: service frame compatible planostereoscopic 3DTV for HEVC coded services. V1.1.1, June 2016

    Google Scholar 

  21. ISO/IEC 23002-3: Information technology—MPEG video technologies—Part 3: Representation of auxiliary video and supplemental information (2007)

    Google Scholar 

  22. Hellge, C., Wiegand, T., Torre, E.G., Gomez-Barquero, D., Schierl, T.: Efficient HDTV and 3DTV services over DVB-T2 using multiple PLPs with layered media. IEEE Commun. Mag. 51(10), 76–82 (2013). https://doi.org/10.1109/MCOM.2013.6619569

    Article  Google Scholar 

  23. Gurler, C.G., Gorkemli, B., Saygili, G., Tekalp, A.M.: Flexible transport of 3-D video over networks. Proc. IEEE 99(4), 694–707 (2011). https://doi.org/10.1109/JPROC.2010.2100010

    Article  Google Scholar 

  24. Bugdayci, D., Akar, G.B., Gotchev, A.: Optimized transmission of 3D video over DVB-H channel. In: IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, pp. 20–24 (2012). https://doi.org/10.1109/ccnc.2012.6181056

  25. Buğdaya, D., Bid, M.O., Aksay, A., Demirtaş, M., Akar, G.B.: Video + depth based 3D video broadcast over DVB-H. In: 2010 IEEE 18th Signal Processing and Communications Applications Conference, Diyarbakir, 2010, pp. 902–905. https://doi.org/10.1109/siu.2010.5652310

  26. Hossen, M.S., Kim, S.H., Kim, K.D.: Stereoscopic video transmission over DVB-T2 system using future extension frame. IEEE Trans. Broadcast. 62(4), 817–825 (2016). https://doi.org/10.1109/TBC.2016.2590831

    Article  Google Scholar 

  27. Kim, S.-H., Lee, J., Jeong, S., Choi, J., Kim, J.: Development of fixed and mobile hybrid 3DTV for next generation terrestrial DTV. In: 2013 3DTV Vision Beyond Depth (3DTV-CON), Aberdeen, pp. 1–2 (2013)

    Google Scholar 

  28. Ekmekcioglu, E., Gurler, G., Kondoz, A., Tekalp, A.M.: Adaptive multi-view video delivery using hybrid networking. IEEE Trans. Circ. Syst. Video Technol. 27(6), 1313–1325 (2017)

    Article  Google Scholar 

  29. Lykourgiotis, A., et al.: Hybrid broadcast and broadband networks convergence for immersive TV applications. IEEE Wirel. Commun. 21(3), 62–69 (2014). https://doi.org/10.1109/MWC.2014.6845050

    Article  Google Scholar 

  30. Yun, K., Cheong, W., Kim, K.: A synchronization and T-STD model for 3D video distribution and consumption over hybrid network. IEICE Trans. Inf. Syst. 98(10), 1884–1887 (2015), Oct 2015. https://doi.org/10.1587/transinf.2014edl8242

  31. Olaizola, I.G., Pérez, J., Zorrilla, M., Martín, Á., Laka, M.: Reference model for hybrid broadcast web 3D TV. In: Proceedings of the 18th International Conference on 3D Web Technology (Web3D ‘13). ACM, New York, NY, USA, pp. 177–180, June 2013. https://doi.org/10.1145/2466533.2466560

  32. ETSI TS 102 796 v1.4.1: Hybrid broadcast broadband TV, Aug 2016

    Google Scholar 

  33. https://www.w3.org/TR/2016/REC-html51–20161101/. Accessed 30 Sept 2017

  34. Lee, J., Yun, K., Kim, K.: A 3DTV broadcasting scheme for high-quality stereoscopic content over a hybrid network. IEEE Trans. Broadcast. 59(2), 281–289 (2013). https://doi.org/10.1109/TBC.2013.2256678

    Article  Google Scholar 

  35. Tekalp, A.M.: Digital Video Processing. Prentice Hall (2015)

    Google Scholar 

  36. Ozcinar, C., Ekmekcioglu, E., Kondoz, A.: Quality-aware adaptive delivery of multi-view video. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–6, Mar 2016

    Google Scholar 

  37. Park, G., Lee, J., Lee, G., Kim, K.: Efficient 3D adaptive HTTP streaming scheme over internet TV. In: IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–6, June 2012

    Google Scholar 

  38. Su, T., Javadtalab, A., Yassine, A., Shirmohammadi, S.: A DASH-based 3D multi-view video rate control system. In: 2014 8th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–6, Dec 2014

    Google Scholar 

  39. Gouache, S., Bichot, G., Bsila, A., Howson, C.: Distributed & adaptive HTTP streaming. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, July 2011

    Google Scholar 

  40. Gürler, C.G., Tekalp, M.: Peer-to-peer system design for adaptive 3D video streaming. IEEE Commun. Mag. 51(5), 108–114 (2013)

    Article  Google Scholar 

  41. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutor. 7(2), 72–93 (2005)

    Article  Google Scholar 

  42. Hudzia, B., Kechadi, M.-T., Ottewill, A.: Treep: a tree based p2p network architecture. In: Cluster Computing, 2005. IEEE International, pp. 1–15 (2005)

    Google Scholar 

  43. Magharei, N., Rejaie, R., Guo, Y.: Mesh or multiple-tree: a comparative study of live p2p streaming approaches. In: INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE, pp. 1424–1432 (2007)

    Google Scholar 

  44. Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of p2p traffic using application signatures. In: Proceedings of the 13th International Conference on World Wide Web, pp. 512–521 (2004)

    Google Scholar 

  45. Galuba, W., Girdzijauskas, S.: Distributed hash table. In: Encyclopedia of Database Systems. Springer, Berlin, pp. 903–904 (2009)

    Google Scholar 

  46. B. Inc; BitTorrent. Available: http://www.bittorrent.com/. Accessed 11 June 2017

  47. Vlavianos, A., Iliofotou, M., Faloutsos, M.: BiToS: enhancing BitTorrent for supporting streaming applications. In: INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings, pp. 1–6 (2006)

    Google Scholar 

  48. Paris, J.-F., Shah, P.: Peer-to-peer multimedia streaming using BitTorrent. In: Performance, Computing, and Communications Conference, 2007. IPCCC 2007. IEEE International, pp. 340–347 (2007)

    Google Scholar 

  49. Liu, Z., et al.: H. 264/MVC interleaving for real-time multiview video streaming. J. Real-Time Image Process 10(3), 501–511 (2015)

    Article  Google Scholar 

  50. Wang, P., Wu, L., Aslam, B., Zou, C.C.: A systematic study on peer-to-peer botnets. In: Proceedings of 18th International Conference on Computer Communications and Networks, 2009. ICCCN 2009, pp. 1–8 (2009)

    Google Scholar 

  51. Bracciale, L., Piccolo, F.L., Luzzi, D., Salsano, S., Bianchi, G., Blefari-Melazzi, N.: A push-based scheduling algorithm for large scale P2P live streaming. In: Telecommunication Networking Workshop on QoS in Multiservice IP Networks, 2008. IT-NEWS 2008. 4th International, pp. 1–7 (2008)

    Google Scholar 

  52. Zhang, M., Zhang, Q., Sun, L., Yang, S.: Understanding the power of pull-based streaming protocol: can we do better? IEEE J. Sel. Areas Commun. 25(9) (2007)

    Google Scholar 

  53. SVC extension of H.264/AVC—Fraunhofer Heinrich Hertz Institute. Available: https://www.hhi.fraunhofer.de/en/departments/vca/research-groups/image-video-coding/research-topics/svc-extension-of-h264avc.html. Accessed 11 June 2017

  54. Gurler, C.G., Savas, S.S., Tekalp, A.M.: Quality of experience aware adaptation strategies for multi-view video over p2p networks. In: 19th IEEE International Conference on Image Processing (ICIP), pp. 2289–2292 (2012)

    Google Scholar 

  55. Fehn, C.: Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV. In: Electronic Imaging 2004, pp. 93–104 (2004)

    Google Scholar 

  56. Ahlgren A, Dannewitz C, Imbrenda C, Kutscher D, Ohlman B, “A survey of information-centric networking”, IEEE Commun. Mag., vol. 50, no. 7, 2012

    Google Scholar 

  57. Fayazbakhsh, S.K., et al.: Less pain, most of the gain: incrementally deployable icn. ACM SIGCOMM Comput. Commun. Rev. 43, 147–158 (2013)

    Article  Google Scholar 

  58. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H, Braynard, R.L.: Networking named content. In: Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies pp. 1–12 (2009)

    Google Scholar 

  59. Zhang, F., Zhang, Y., Reznik, A., Liu, H., Qian, C., Xu, C.: A transport protocol for content-centric networking with explicit congestion control. In: 2014 23rd International Conference on Computer Communication and Networks (ICCCN), pp. 1–8 (2014)

    Google Scholar 

  60. Zhou, J., Wu, Q., Li, Z., Kaafar, M.A., Xie, G.: A proactive transport mechanism with explicit congestion notification for NDN. In: IEEE International Conference on Communications (ICC), pp. 5242–5247 (2015)

    Google Scholar 

  61. Carofiglio, G., Gallo, M., Muscariello, L., Papalini, M., Wang, S.: Optimal multipath congestion control and request forwarding in information-centric networks. In: 21st IEEE International Conference on Network Protocols (ICNP), pp. 1–10 (2013)

    Google Scholar 

  62. Kulik, I., Trinh, T.: Investigation of quality of experience for 3D video in wireless network environment. In: 18th European Conference on Information and Communications Technologies (EUNICE), Aug 2012, Budapest, Hungary. Lecture Notes in Computer Science, LNCS, vol. 7479, pp. 340–349, Information and Communication Technologies. Springer, Berlin (2012)

    Google Scholar 

  63. Politis, I., Lykourgiotis, A., Dagiuklas, T.: A framework for QoE-aware 3D video streaming optimisation over wireless networks. Mobile Inf. Syst. 2016, Article ID 4913216, 18 p (2016

    Google Scholar 

  64. Ho, D., Kim, H., Kim, W., Park, Y., Chang, K., Lee, H., Song, H.: Mobile cloud-based interactive 3D rendering and streaming system over heterogeneous wireless networks. IEEE Trans. Cir. Sys. Video Technol. 27(1), 95–109 (2017)

    Article  Google Scholar 

  65. Nasir, S., Hewage, C.T.E.R., Mrak, M., Worrall, S., Kondoz, A.M.: Depth based object prioritisation for 3D video communication over Wireless LAN. In: 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, pp. 4269–4272 (2009)

    Google Scholar 

  66. Cuervo, E., Wolman, A., Cox, L.P., Lebeck, K., Razeen, A., Saroiu, S., Musuvathi, M.: Kahawai: high-quality mobile gaming using GPU offload. In: Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys ‘15). ACM, New York, NY, USA, pp. 121–135 (2015)

    Google Scholar 

  67. Oztas, B., Pourazad, M.T., Nasiopoulos, P., Leung, V.C.M.: Adaptive 3D-HEVC video streaming over congested networks through layer prioritization. In: 24th International Conference on Telecommunications (ICT), Limassol, pp. 1–5 (2017). https://doi.org/10.1109/ict.2017.7998258

  68. Chen, Z., Zhang, X., Xu, Y., Xiong, J., Zhu, Y., Wang, X.: MuVi: multi-view video aware transmission over MIMO wireless systems. IEEE Trans. Multim 99, 1–1. https://doi.org/10.1109/tmm.2017.2713414

  69. Liu, Z., Cheung, G., Chakareski, J., Ji, Y.: Multiple description coding and recovery of free viewpoint video for wireless multi-path streaming. IEEE J. Sel. Top. Signal Process. 9(1), 151–164 (2015). https://doi.org/10.1109/JSTSP.2014.2330332

    Article  Google Scholar 

  70. Lin, C.H., Yang, D.N., Lee, J.T., Liao, W.: Efficient error-resilient multicasting for multi-view 3D videos in wireless network. In: IEEE Global Communications Conference (GLOBECOM), Washington, DC, pp. 1–7 (2016). https://doi.org/10.1109/glocom.2016.7841779

  71. Yoon, Y., Kim, M., Lee, B., Go, K.: Temporal synchronization scheme in live 3D video streaming over IEEE 802.11 wireless networks. In: Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, Sydney, NSW, pp. 1–7 (2014). https://doi.org/10.1109/wowmom.2014.6918944

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Dumic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dumic, E. et al. (2019). Transmission of 3D Video Content. In: Assunção, P., Gotchev, A. (eds) 3D Visual Content Creation, Coding and Delivery. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-77842-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77842-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77841-9

  • Online ISBN: 978-3-319-77842-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics