A Little-Known and a Little-Consumed Natural Resource: Salicornia

  • Munir Ozturk
  • Volkan Altay
  • Nesrin Orçen
  • Ahmet Emre Yaprak
  • Gül Nilhan Tuğ
  • Aykut Güvensen
Chapter

Abstract

A sustainable conservation and knowledge of genetic resources from our natural wealth is very important for future research. Within this scope, Salicornia has emerged as an important cash crop halophyte for seawater irrigation, because of its high salt tolerance. It is capable of growing under hypersaline conditions and a promising resource to cultivate under extreme climatic conditions in the arid-desert regions. The fleshy Salicornia plants have been historically used for both edible and nonedible purposes. Usage of the plant as a source of soda (sodium carbonate) for glassmaking dates back to centuries. Oriental pharmacopeia reports its medicinal uses. This genus is also well known for its applications as additive in the production of glass and soap, as medicinal herbs and also in some applications as a diet for human consumption and for domestic animals. The fleshy plants are eaten as a green vegetable raw or pickled very much in the coastal belt of the Mediterranean basin and commands a high price in gourmet food markets in Europe and the USA. This review highlights the latest information about the Salicornia genus with an emphasis on its morphological features, taxonomic status, ecophysiological characteristics, cultivation, nutritional features (as human and animal food), and other economical uses.

Keywords

Salicornia Alternative plant source Natural edible plant Famine food 

References

  1. Aghaleh M, Niknam VA, Ebrahimzadeh HA, Razavi KB (2009) Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol Plantarum 53(2):243–248Google Scholar
  2. Aghaleh M, Niknam VA, Ebrahimzadeh HA, Razavi KB (2011) Effect of salt stress on physiological andantioxidative responses in two species of Salicornia persica and S. europaea. Acta Physiol Plantarum 33(4):1261–1270Google Scholar
  3. Akhani H (2008) Taxonomic revision of the genus Salicornia L.(Chenopodiaceae) in central and southern Iran. Pakistan J Bot 40(4):1635–1655Google Scholar
  4. Algharib AM, Orçen N, Nazarian GR (2016) Effect of salt stress on plant growth and physiological parameters of common glasswort (Salicornia europaea). Int J Biosci 8(2):218–227Google Scholar
  5. Al-Qudat M, Qadir M (2011) The halophytic flora of Syria. International Center for Agricultural Research in the Dry Areas, Aleppo, Syria. Viii+186 ppGoogle Scholar
  6. Al-Turki TA (1997) A preliminary checklist of the flora of Qassim, Saudi Arabia. Fedde Repertoríum 108:259–280Google Scholar
  7. Anwar F, Bhanger MI, Nasir MK, Ismail S (2002) Analytical characterization of Salicornia bigelovii seed oil cultivated in Pakistan. J Agric Food Chem 50(15):4210–4214PubMedGoogle Scholar
  8. Arnold A (1955) Die Bedeutung der Chlorionen für die Pflanze, insbesondere deren physiologische Wirksamkeit. Bot. Stud. 2. Gustav Fischer, JenaGoogle Scholar
  9. Attia FM, Al-Sobayel AA, Kriadees MS, Al-Saiady MY, Bayoumi MS (1997) Nutrient compositionand feedingvalue of Salicornia bigelovii Torr. Meal in broiler diets. Anim Feed Sci Technol 65:257–263Google Scholar
  10. Austenfeld FA (1986) Nutrient reserves of Salicomia europaea seeds. Physiol Plant 68:446–450Google Scholar
  11. Austenfeld FA (1988) Seed dimorphism in Salicomia: nutrient reserves. Physiol Plant 73:502–504Google Scholar
  12. Bahadir H, Sakcali S, Ozturk M (2002) Studies on the soil plant interactions in Salicorniaeuropaea L. Proceedings of Intern. Conf. Optimisation of Resources on Saline Soils, Egypt, 5–8 April, 7 ppGoogle Scholar
  13. Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soils J 32:265–272Google Scholar
  14. Bresdin C, Glenn EP, Brown JJ (2016) Comparision of seed production and agronomic traits of 20 wild accessions of Salicornia bigelovii Torr. grown under greenhouse conditions. In: Khan MA et al (eds) Halophytes for food security in dry lands. Elsevier, pp 67–82Google Scholar
  15. Brown PW, Glenn PE, Kevin M (1999) Halophytes for the treatment of the saline aquaculture effluent. Aquaculture 175:255–268Google Scholar
  16. Cao J, Lv XY, Chen L, Xing JJ, Lan HY (2015) Effects of salinity on the growth, physiology and relevant gene expression of an annual halophyte grown from heteromorphic seeds. AoB Plants 7:plv112.  https://doi.org/10.1093/aobpla/plv112 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chapman VJ (1960) Salt marshes and salt deserts of the World. Plant Sci. Monographs. Leonard Hill (Books) Lim. and New York: Interscience Publishers, Inc., LondonGoogle Scholar
  18. Christiansen R (2008) Sea asparagus can be oilseed feedstock for biodiesel. Biomass Magazine, August, 2008. http://www.biomassmagazine.com/article.jsp?article id=1864
  19. Cybulska I, Chaturvedi T, Brudecki GP et al (2014) Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential. Bioresour Technol 153:165–172PubMedGoogle Scholar
  20. Davy AJ, Bishop GF, Costa CSB (2001) Salicornia L. (S. pusilla J. Woods, S. ramosissima J. Woods, S.europaea L., S. obscura P.W. Ball & Tutin, S. nitens P.W. Ball & Tutin, S. fragilis P.W. Ball & Tutin, and S. dolichostachya Moss). J Ecol 89:681–707Google Scholar
  21. El-Mallah MH, Murui T, El-Shami S (1994) Detailed studies on seed oil of Snlicornia SOS-7 cultivated at the Egyptian border of Red-Sea. C rasas y Aceites 45:385–389Google Scholar
  22. Essaidi I, Brahmi Z, Snoussi A et al (2013) Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control 32:125–133Google Scholar
  23. Falasca SL, Ulberich A, Acevedo A (2014) Identification of Argentinian saline drylands suitable for growing Salicornia bigelovii for bioenergy. Int J Hydrogen Energy 39:8682–8689Google Scholar
  24. Fedoroff NV, Battisti DS, Beachy RN et al (2010) Radically rethinking agriculture for the 21st century. Science 327:833–834PubMedPubMedCentralGoogle Scholar
  25. Flowers TJ, Colmer TD (2008) Salinity tolerance of halophytes. New Phytol 179:945–963PubMedGoogle Scholar
  26. Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337Google Scholar
  27. Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612Google Scholar
  28. Fu ZY, Zhao KF (2003) Effect of photoperiod on flowering of Salicornia bigelovii Torr. J Plant Physiol Mol Biol 29:474–478. (Abstract in English)Google Scholar
  29. Geslin M, Verbist J-F (1985) Flavonoides de Salicomia europaea. J Nat Prod 48:111–113Google Scholar
  30. Glenn EP, Oleary JW, Watson MC, Thompson TL, Kuehl RO (1991) Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science 251:1065–1067PubMedGoogle Scholar
  31. Glenn EP, Coates W, Riley J, Kuehl R, Swingle S (1992) Salicornia bigelovii Torr.: a seawater-irrigated forage for goats. Anim Feed Sci Technol 40:21–30Google Scholar
  32. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255Google Scholar
  33. Grattan SR, Benes SE, Peters DW, Diaz F (2008) Feasibility of irrigating pickleweed (Salicornia bigelovii Torr) with hyper-saline drainage water. J Environ Qual 37(5):149–156Google Scholar
  34. Grieve CM, Shannon MC, Poss JA (2001) Mineral nutrition of leafy vegetable crops irrigated with saline drainage water. J Vegetable Crop Prod 7:37–47Google Scholar
  35. Ha JA, Lee SH, Kim HJ, Lee JY (2006) The role of Salicornia herbacea in ovariectomy-induced oxida tive stress. Biol Pharm Bull 29:1305–1309PubMedGoogle Scholar
  36. Hupel M, Lecointre C, Meudec A, Poupart N, Gall EA (2011) Comparison of photoprotective responses to UV radiation in the brown seaweed Pelvetia canaliculata and the marine angiosperm Salicornia ramosissima. J Exp Mar Biol Ecol 401:36–47Google Scholar
  37. Im S-A, Kim GW, Lee CK (2003) Immunomodulatory activity of Salicornia herbacea L. components. Nat Prod Sci 9:273–277Google Scholar
  38. Im S-A, Kim K, Lee C-K (2006) Immunomodulatory activity of polysaccharides isolated from Salicornia herbacea. Int Immunopharmacol 6:1451–1458PubMedGoogle Scholar
  39. Isca V, Seca AM, Pinto DC, Silva A (2014a) An overview of Salicornia genus: the phytochemical and pharmacological profile. Nat Prod Res Rev 2(2):145–164Google Scholar
  40. Isca VM, Seca AM, Pinto DC, Silva H, Silva AM (2014b) Lipophilic profile of the edible halophyte Salicornia ramosissima. Food Chem 165:330–336PubMedGoogle Scholar
  41. Jang HS, Kim KR, Choi SW, Woo MH, Choi JH (2007) Antioxidant and antithrombus activities of enzyme-treated Salicornia herbacea extracts. Ann Nutr Metab 51:119–125PubMedGoogle Scholar
  42. Jefferies RL, Gottlieb LD (1982) Genetic differentiation of the microspecies Salicornia europaea L. (SensuStricto) and S. ramosissima J. woods. New Phytol 92:123–129Google Scholar
  43. Jiang D, Huang L, Lin S, Li Y (2010) Allelopathic effects of euhalophyte Salícornia bigelovii on marine alga Skeletonema costatwn. Allelopathy J 25:163–172Google Scholar
  44. Jouyban Z (2012) The effects of salt stress on plant growth. Tech J Eng Appl 2(1):7–10Google Scholar
  45. Kadereit G, Mucina L, Freitag H (2006) Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in leaf and flower morphology. Taxon 55:617–642Google Scholar
  46. Kadereit G, Ball P, Beer S, Mucina L, Sokoloff D, Teege P, Yaprak AE, Freitag H (2007) A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae). Taxon 56(4):1143–1170Google Scholar
  47. Kang S, Kim D, Lee BH, Kim M-R, Chiang M, Hong J (2011) Antioxidant proprieties and cytotoxic effects of fractions from glasswort (Salicornia herbacea) seeds extracts on human intestinal cells. Food Sci Biotechnol 20:115–122Google Scholar
  48. Katschnig D, Broekman R, Rozema J (2013) Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology. Environ Exp Bot 92:32–42Google Scholar
  49. Khan MA, Gul B (2006) Halophyte seed germination. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer Verlag, Dordrecht, Netherlands, pp 11–30Google Scholar
  50. Khan MA, Gul B, Weber DJ (2001) Effect of salinity on the growth and ion content of Salicornia rubra. Commun Soil Sci Plant Anal 32(17&18):2965–2977Google Scholar
  51. Khan MA, Ozturk M, Gul B, Ahmed MZ (2016) Halophytes for food security in drylands. Academic Press, Elsevier, New York, USA, p 338Google Scholar
  52. Kim JY, Cho JY, Ma YK, Park KY, Lee SH, Ham KS, Lee HJ, Park KH, Moon JH (2011) Dicaffeoyl quinic acid derivatives and flavonoid glucosides from glasswort (Salicomia herbacea L.) and their antioxidative activity. Food Chem 125:55–62Google Scholar
  53. Kim H-W, Hwang K-E, Song D-H et al (2014) Effect of glasswort (Salicornia herbacea L.) on the texture of frankfurters. Meat Sci 97:513–517PubMedGoogle Scholar
  54. Kong Y, Zheng Y (2014) Potential of producing Salicornia bigelovii hydroponically as a vegetable at moderate NaCl salinity. HortScience 49(9):1154–1157Google Scholar
  55. Kong C-S, Kim YA, Kim MM, Park JS, Kim JA, Kirn SK, Lee BJ, Nam TJ, Seo Y (2008a) Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol In Vitro 22:1742–1748PubMedGoogle Scholar
  56. Kong CS, Kirn YA, Kim MM, Park JS, Kim SK, Lee BJ, Nam TJ, Seo Y (2008b) Antioxidant activity and inhibition of MMP-9 by isorhamnetin and quercetin 3-0-β-D-glucopyranosides isolated from Salicornia herbacea in HT1080 cells. Food Sci Biotechnol 17:983–989Google Scholar
  57. Laudadio V, Tufarelli V, Dario M, Hammadi M, Seddik MM, Lacalandra GM, Dario C (2009) A survey of chemical and nutritional characteristics of halophytes plants used by camels in Southern Tunisia. Tropl Anim Health Prod 41(2):209–215Google Scholar
  58. Lu D, Zhang M, Wang S, Cai J, Zhou X, Zhu C (2010) Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT–Food Sci Technol 43:519–524Google Scholar
  59. Maggio A, De Pascale S, Fagnano M, Barbieri G (2011) Saline agriculture in Mediterranean environments. Ital J Agronomy 6:36–43Google Scholar
  60. Mudie PJ, Greer S, Brakel J, Dickson JH, Schinkel C, Peterson-Welsh R, Stevens M, Turner NJ, Shadow M, Washington R (2005) Forensic palynology and ethnobotany of Salicornia species (Chenopodiaceae) in northwest Canada and Alaska. Can J Bot 83:111–123Google Scholar
  61. Muscolo A, Panuccio MR, Piernik A (2014) Ecology, distribution and ecophysiology of Salicornia europaea L. In: Sabkha Ecosystems: Volume IV: Cash Crop Halophyte and Biodiversity Conservation. Springer, Dordrecht, Netherlands, pp 233–240Google Scholar
  62. Norman HC, Masters DG, Barrett-Lennard EG (2013) Halophytes as forages in saline landscapes: interactions between plant genotype and environment change their feeding value to ruminants. Environ Exp Bot 92:96–109Google Scholar
  63. O’Callaghan M (1992) The ecology and identification of the southern African Salicornieae (Chenopodiaceae). S Afr Fournal Bot 58:430–439Google Scholar
  64. OASE Foundation (2009) Biosaline Agriculture. The Netherlands, Amsterdam. http://www.oasefoundation.eu/organisation Google Scholar
  65. Ohori T, Fujiyama H (2011) Water deficit and abscisic acid production of Salicornia bigelovii under salinity stress. Soil Sci Plant Nutr 57(4):566–572Google Scholar
  66. Ozawa T, Miura M, Fukuda M, Kakuta S (2009) Cadmium tolerance and accumula-tion in a halophyte Salicornia europaea as a new candidate for phytoremediationof saline soils. Sci Rep Grad Sch Life Environ Sci Osaka Pref Univ 60:1–8Google Scholar
  67. Ozturk M, Szaniawiski RK (1981) Root temperature stress and proline content in leaves and roots of two ecologically different plant species. Zeitschrift für Pflanzenphysiologie 102:375–377Google Scholar
  68. Ozturk M, Turkyilmaz B, Gucel S, Guvensen A (2011) Proline accumulation in some coastal zone plants of the Aegean region of Turkey. In: Muscolo A, Flowers TJ (eds) Proceedings of theEuropean COST action FA0901. The European Journal of Plant Science and Biotechnology, vol 5(Special Issue 2): 54–56Google Scholar
  69. Park KW, An JY, Lee HJ, Son D, Sohn YG, Kim C, Lee JJ (2013) The growth and accumulation of osmotic solutes of the halophyte common glasswort (Salicornia europaea) under salinity conditions. J Aquat Plant Manag 51:103–108Google Scholar
  70. Patel S (2016) Salicornia: evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech 6(1):1–10Google Scholar
  71. Pedro CA, Santos MS, Ferreira SM, Gonçalves SC (2013) The influence of cadmium contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Mar Environ Res 92:197–205PubMedGoogle Scholar
  72. Priyashree S, Jha S, Pattanayak SP (2010) A review on Cressa cretica Linn.: a halophytic plant. Pharmacogn Rev 4:161–166PubMedPubMedCentralGoogle Scholar
  73. Rajput ZI, Hu S, Xiao C, Arijo AG (2007) Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B 8:153–161PubMedPubMedCentralGoogle Scholar
  74. Rosso PH, Pushnik JC, Lay M, Ustin SL (2005) Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environ Pollut 137:241–252PubMedGoogle Scholar
  75. Rozema J, Schat H (2013) Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ Exp Bot 92:83–95Google Scholar
  76. Rueda-Puente EO, Prabhaharan R, Murillo-Amador B, Ruiz-Espinoza F, Puente M, Valdez-Cepeda RD (2013) Ameliorative effects of salt resistance on physiological parameters in the halophyte Salicornia bigelovii Torr. with plant growth-promoting rhizobacteria. Afr J Biotechnol 12(34):5278–5284Google Scholar
  77. Seo H, Jeon BY, Yun A, Park DH (2010) Effect of glasswort (Salicornia herbacea L.) on microbial community variations in the vinegar-making process and vinegar characteristics. J Microbiol Biotechnol 20:1322–1330PubMedGoogle Scholar
  78. Shabala S, Mackay A (2011) Ion transport in halophytes, plant responses to drought and salinity stress: developments in a post-genomic era. Academic Press Ltd-Elsevier Science Ltd, London, pp 151–199Google Scholar
  79. Sharma A, Gontia I, Agarwal PK, Jha B (2010) Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Mar Biol Res 6:511–518Google Scholar
  80. Shepherd KA, Macfarlane TD, Colmer TD (2005) Morphology, anatomy and histochemistry of Salicornioideae (Chenopodiaceae) fruits and seeds. Ann Bot 95:917–933PubMedPubMedCentralGoogle Scholar
  81. Shin M-G, Lee G-H (2013) Spherical granule production from micronized saltwort (Salicornia herbacea) powder as salt substitute. Prev Nutr Food Sci 18:60–66PubMedPubMedCentralGoogle Scholar
  82. Shpigel M, Ben-Ezra D, Shauli L et al (2013) Constructed wetland with Salicornia as a biofilter for mariculture effluents. Aquaculture 412-413:52–63Google Scholar
  83. Siddiqui MH, Mohammad F, Khan MN (2009) Morphological and physio-biochemical characterization of Brassica juncea L. Czern. &Coss. genotypes under salt stress. J Plant Interact 4:67–80Google Scholar
  84. Silva H, Caldeira G, Freitas H (2007) Salicornia ramosissima population dynamic sand tolerance of salinity. Ecol Res 22:125–134Google Scholar
  85. Singh D, Buhmann AK, Flowers TJ et al (2014) Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB Plants.  https://doi.org/10.1093/aobpla/plu071
  86. Smillie C (2015) Salicornia spp. as a biomonitor of Cu and Zn in salt marsh sediments. Ecol Indic 56:70–78Google Scholar
  87. Solomon A, Beer S, Waisel Y, Jones GP, Poleg LG (1994) Effect of NaCl on the carboxylating activities of Rubisco from Tamarix jordanis in the presence and absence of proline related compatible solutes. Physiol Plant 90:189–204Google Scholar
  88. Song SH, Lee C, Lee S et al (2013) Analysis of microflora profile in Korean traditional nuruk. J Microbiol Biotechnol 23:40–46PubMedGoogle Scholar
  89. Strickland FM (2001) Immune regulation by polysaccharides: implications for skin cancer. J Photochem Photobiol B 63:132–140PubMedGoogle Scholar
  90. Swingle RS, Glenn EP, Squires V (1996) Growth performance of lambs fed mixed diets containing halophyte ingredients. Anim Feed Sci Technol 63:137–148Google Scholar
  91. Tester M, Davenport R (2003) Na+ tolerant and Na+ transport in higher plants. Ann Bot 91:503–527PubMedPubMedCentralGoogle Scholar
  92. Tipirdamaz R, Gagneul D, Duhazé C, Aïnouche A, Monnier C, Ozkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57(1):139–153Google Scholar
  93. Unal BT, Guvensen A, Esiz Dereboylu A, Ozturk M (2013) Variations in the proline and total protein contents in Origanum sipyleum L.from different altitudes of Spil Mountain, Turkey. Pakistan J Bot 45(S1):571–576Google Scholar
  94. Ungar IA (1978) The effects of salinity and hormonal treatments on growth and ion uptake of Salicornia europaea. Bulletin de la Societe Botanique de France Actualites 124(95):46–56Google Scholar
  95. Ungar IA (1991) Ecophysiology of vascular halophytes. CRS Press, Boca Raton, FLGoogle Scholar
  96. Ushakova SA, Kovaleva NP, Gribovskaya IV, Dolgushev VA, Tikhomirova NA (2005) Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS. Adv Space Res 36:1349–1353Google Scholar
  97. Van Resenburg L, Kruger GHJ, Kruger H (1993) Proline accumulation as drought tolerance selection criterion: Its relationship to membrane integrity and chloroplast ultra-structure in Nicotiana tabacum L. J Plant Physiol 141:188–194Google Scholar
  98. Ventura Y, Sagi M (2013) Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environ Exp Bot 92:144–153Google Scholar
  99. Ventura Y, Wuddineh WA, Ephrath Y, Shpigel M, Sagi M (2010) Molybdenum as an essential element for improving total yield in seawater-grown Salicornia europaea (L.) Sci Hortic 126:395–401Google Scholar
  100. Ventura Y, Wuddineh WA, Myrzabayeva M, Alikulov Z, Khozin-Goldberg I, Shpigel M, Samocha TM, Sagi M (2011a) Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci Hortic 128:189–196Google Scholar
  101. Ventura Y, Wuddineh WA, Shpigel M, Samocha TM, Klim BC, Cohen S, Shemer Z, Santos R, Sagi M (2011b) Effects of day length on flowering and yield production of Salicornia and Sarcocornia species. Sci Hortic 130:510–516Google Scholar
  102. Wagenvoort WA, van de Vooren JG, Brandenburg WA (1989) Plant domestication and the development of sea starwort (Aster tripolium L.) as a new vegetable crop. Acta Horticulturae (242):115–122Google Scholar
  103. Weber D, Ansari R, Gul B, Khan M (2007) Potential of halophytes as sources of edible oil. J Arid Environ 68:315–321Google Scholar
  104. Yaprak AE (2012) Salicornia. In: Güner et al (eds) Türkiye bitkileri listesi (Damarlı Bitkiler). Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını, Istanbul, pp 27–28Google Scholar
  105. Yaprak AE, Yurdakulol E (2008) Salicornia freitagii (Chenopodiaceae), a new species from Turkey. Ann Bot Fenn 45:207–211Google Scholar
  106. York J, Lu Z, Glenn EP, John ME (2000) Daylength affects floral initiation in Salicornia bigelovii Torr. Plant Biology, 41–42 (Abstract)Google Scholar
  107. Yun SE, Kang Y, Bae EJ et al (2014) Iodine-induced thyrotoxic hypokalemic paralysis after ingestion of Salicornia herbacea. Ren Fail 36:461–463PubMedGoogle Scholar
  108. Zerai DB, Glenn EP, Chatervedi R, Lu Z, Mamood AN, Nelson SG, Ray DT (2010) Potential for the improvement of Salicornia bigelovii through selective breeding. Ecol Eng 36(5):730–739Google Scholar
  109. Zeybek N (1969a) Coastal halophytes of inner Izmir bay, their ecology and physiology. Scientific reports of the Faculty of Science, Ege University No: 75, Biol. 50Google Scholar
  110. Zeybek N (1969b) Application of heteroauxin to Salicornia herbacea L. and germination of some halophyte seeds under different salt concentrations. Scientific reports of the Faculty of Science, Ege University PressGoogle Scholar
  111. Zhang S, Wei M, Cao C et al (2015) Effect and mechanism of Salicornia bigelovii Torr. plant salt on blood pressure in SD rats. Food Funct 6:920–926PubMedGoogle Scholar
  112. Zurayk R, Baalbaki R (1996) Inula crithmoides: a candidate plant for saline agriculture. Arid Soil Res Rehabil 10:213–223Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Munir Ozturk
    • 1
  • Volkan Altay
    • 2
  • Nesrin Orçen
    • 3
  • Ahmet Emre Yaprak
    • 4
  • Gül Nilhan Tuğ
    • 4
  • Aykut Güvensen
    • 5
  1. 1.Botany Department and Centre for Environmental StudiesEge UniversityIzmirTurkey
  2. 2.Biology Department, Faculty of Science & ArtsMustafa Kemal UniversityHatayTurkey
  3. 3.Department of Field Crops, Faculty of AgriculturalEge UniversityIzmirTurkey
  4. 4.Department of Biology, Faculty of SciencesAnkara UniversityAnkaraTurkey
  5. 5.Botany Department, Faculty of ScienceEge UniversityIzmirTurkey

Personalised recommendations