Abstract
In the last three decades, multi-frame and single-frame super-resolution and reconstruction techniques have been receiving increasing attention because of the large number of applications that many areas have found when increasing the resolution of their images. For example, in high-definition television, high-definition displays have reached a new level and resolution enhancement cannot be ignored; in some remote sensing applications, the pixel size is a limitation; and in medical imaging, the details are important for a more accurate diagnostic or acquiring high-resolution images while reducing the time of radiation to a patient. Some of the problems faced in this area, that in the future require dealing more effectively, are the inadequate representation of edges, inaccurate motion estimation between images, sub-pixel registration, and computational complexity among others. In this chapter, an overview of the most important methods classified into two taxonomies, multiple- and single-image super-resolution, is given. Moreover, two new techniques for single-image SR are proposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Becker, S., Candès, E., & Grant, M. (2011). Templates for convex cone problems with applications to sparse signal recovery. Mathematical Programming Computation, 3, 165–218.
Belekos, S., Galatsanos, N., & Katsaggelos, A. (2010). Maximum a posteriori video super-resolution using a new multichannel image prior. IEEE Transactions on Image Processing, 19(6), 1451–1464.
Capel, D., & Zisserman, A. (1998). Automated mosaicing with super-resolution zoom. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Santa Barbara, California, USA, 1, 885–891.
Cheeseman, P., Kanefsky, B., Kraft, R., Stutz, J., & Hanson, R. (1994). Super-resolved surface reconstruction from multiple images (1st ed.). London, United Kingdom: Springer Science + Business Media.
Dai, S., Han, M., Xu, W., Wu, Y., & Gong, Y. (2007). Soft edge smooth-ness prior for alpha channel super resolution. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, Minnesota, USA, 1, 1–8.
Dai, S., Han, M., Xu, W., Wu, Y., Gong, Y., & Katsaggelos, A. (2009). SoftCuts: a soft edge smoothness prior for color image super-resolution. IEEE Transactions on Image Processing, 18(5), 969–981.
Debes, C., Wedi, T., Brown, C., & Zoubir, A. (2007). Motion estimation using a joint optimisation of the motion vector field and a super-resolution reference image. In Proceedings of IEEE International Conference on Image Processing (ICIP), San Antonio, Texas, USA, 2, 479–500.
Dong, W., Zhang, L., Shi, G., & Wu, X. (2011). Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 20(7), 1838–1856.
Elad, M., & Hel-Or, Y. (2001). A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Transactions on Image Processing, 10(8), 1187–1193.
Farsiu, S., Robinson, D., Elad, M., & Milanfar, P. (2003). Robust shift and add approach to super-resolution. In Proceedings of SPIE Conference on Applications of Digital Signal and Image Processing, San Diego, California, USA, 1, 121–130.
Farsiu, S., Robinson, D., Elad, M., & Milanfar, P. (2004). Fast and robust multi-frame super-resolution. IEEE Transactions on Image Processing, 13(10), 327–1344.
Farsiu, S., Elad, M., & Milanfar, P. (2006). A practical approach to super-resolution. In Proceedings of SPIE Conference on Visual Communications and Image Processing, San Jose, California, USA, 6077, 1–15.
Huang, K., Hu, R., Han, Z., Lu, T., Jiang, J., & Wang, F. (2011). A face super-resolution method based on illumination invariant feature. In Proceedings of IEEE International Conference on Multimedia Technology (ICMT), Hangzhou, China, 1, 5215–5218.
Hung, K., & Siu, W. (2012). Robust soft-decision interpolation using weighted least squares. IEEE Transactions on Image Processing, 21(3), 1061–1069.
Irani, M., & Peleg, S. (1990). Super-resolution from image sequences. In Proceedings of 10th IEEE International Conference on Pattern Recognition, Atlantic City, New Jersey, USA, 1,115–120.
Irani, M., & Peleg, S. (1991). Improving resolution by image registration. CVGIP Graphical Models and Image Processing, 53(3), 231–239.
Irani. M., & Peleg, S. (1992). Image sequence enhancement using multiple motions analysis. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Champaign, Illinois, USA, 1, 216–222.
Irani, M., & Peleg, S. (1993). Motion analysis for image enhancement: Resolution, occlusion, and transparency. Journal of Visual Communication and Image Representation, 4(4), 324–335.
Jung, C., Jiao, L., Liu, B., & Gong, M. (2011a). Position-patch based face hallucination using convex optimization. IEEE Signal Processing Letters, 18(6), 367–370.
Jung, M., Bresson, X., Chan, T., & Vese, L. (2011b). Nonlocal Mumford-Shah regularizers for color image restoration. IEEE Transactions on Image Processing, 20(6), 1583–1598.
Keren, D., Peleg, S., & Brada, R. (1998). Image sequence enhancement using subpixel displacements. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Ann Arbor, Michigan, USA, 1, 742–746.
Kim, K., & Kwon, Y. (2008). Example-based learning for single-image super-resolution. Pattern Recognition, LNCS, 5096, 456–465.
Kim, K., & Kwon, Y. (2010). Single-image super-resolution using sparse regression and natural image prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(6), 1127–1133.
Kong, D., Han, M., Xu, W., Tao, H., & Gong, Y. (2006). A conditional random field model for video super-resolution. In Proceedings of 18th International Conference on Pattern Recognition (ICPR), Hong Kong, China, 1, 619–622.
Kumar, S., & Nguyen, T. (2010). Total subset variation prior. In Proceedings of IEEE International Conference on Image Processing (ICIP), Hong Kong, China, 1, 77–80.
Li, X., & Orchard, M. (2001). New edge-directed interpolation. IEEE Transactions on Image Processing, 10(10), 1521–1527.
Li, F., Jia, X., & Fraser, D. (2008). Universal HMT based super resolution for remote sensing images. In Proceedings of 15th IEEE International Conference on Image Processing (ICIP), San Diego, California, USA, 1, 333–336.
Li, X., Lam, K., Qiu, G., Shen, L., & Wang, S. (2009). Example-based image super-resolution with class-specific predictors. Journal of Visual Communication and Image Representation, 20(5), 312–322.
Li, X., Hu, Y., Gao, X., Tao, D., & Ning, B. (2010). A multi-frame image super-resolution method. Signal Processing, 90(2), 405–414.
Liu, C., & Sun, D. (2011). A Bayesian approach to adaptive video super resolution. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, Colorado, USA, 1, 209–216.
Mallat, S., & Yu, G. (2010). Super-resolution with sparse mixing estimators. IEEE Transactions on Image Processing, 19(11), 2889–2900.
Martins, A., Homem, M., & Mascarenhas, N. (2007). Super-resolution image reconstruction using the ICM algorithm. In Proceedings of IEEE International Conference on Image Processing (ICIP), San Antonio, Texas, USA, 4, 205–208.
Mochizuki, Y., Kameda, Y., Imiya, A., Sakai, T., & Imaizumi, T. (2011). Variational method for super-resolution optical flow. Signal Processing, 91(7), 1535–1567.
Morera, D. (2015). Determining parameters for images amplification by pulses interpolation. Ingeniería Investigación y Tecnología, 16(1), 71–82.
Morera, D. (2014). Amplification by pulses interpolation with high frequency restrictions for conservation of the structural similitude of the image. International Journal of Signal Processing, Image Processing and Pattern Recognition, 7(4), 195–202.
Omer, O., & Tanaka, T. (2010). Image superresolution based on locally adaptive mixed-norm. Journal of Electrical and Computer Engineering, 2010, 1–4.
Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.
Peyre, G., Bougleux, S., & Cohen, L. (2008). Non-local regularization of inverse problems. In Proceedings of European Conference on Computer Vision, Marseille, France, 5304, 57–68.
Pickup, L., Capel, D., & Roberts, S. (2006). Bayesian image super-resolution, continued. Neural Information Processing Systems, 19, 1089–1096.
Pickup, L. (2007). Machine learning in multi-frame image super-resolution. Ph.D. thesis, University of Oxford.
Prendergast, R., & Nguyen, T. (2008). A block-based super-resolution for video sequences. In Proceedings of 15th IEEE International Conference on Image Processing (ICIP), San Diego, California, USA, 1, 1240–1243.
Purkait, P., & Chanda, B. (2012). Super resolution image reconstruction through Bregman iteration using morphologic regularization. IEEE Transactions on Image Processing, 21(9), 4029–4039.
Ren, C., He, X., Teng, Q., Wu, Y., & Nguyen, T. (2006). Single image super-resolution using local geometric duality and non-local similarity. IEEE Transactions on Image Processing, 25(5), 2168–2183.
Ren, C., He, X., & Nguyen, T. (2017). Single image super-resolution via adaptive high-dimensional non-local total variation and adaptive geometric feature. IEEE Transactions on Image Processing, 26(1), 90–106.
Schultz, R., & Stevenson, R. (1994). A Bayesian approach to image expansion for improved definition. IEEE Transactions on Image Processing, 3(3), 233–242.
Shao, W., & Wei, Z. (2008). Edge-and-corner preserving regularization for image interpolation and reconstruction. Image and Vision Computing, 26(12), 1591–1606.
Song, H., Zhang, L., Wang, P., Zhang, K., & Li, X. (2010). An adaptive L1–L2 hybrid error model to super-resolution. In: Proceedings of 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China, 1, 2821–2824.
Sun, J., Xu, Z., & Shum, H. (2008). Image super-resolution using gradient profile prior. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, 1, 1–8.
Tappen, M., Russell, B., & Freeman, W. (2003). Exploiting the sparse derivative prior for super-resolution and image demosaicing. In Proceedings of IEEE 3rd International Workshop on Statistical and Computational Theories of Vision (SCTV), Nice, France, 1, 1–24.
Villena, S., Abad, J., Molina, R., & Katsaggelos, A. (2004). Estimation of high resolution images and registration parameters from low resolution observations. Progress in Pattern Recognition, Image Analysis and Applications, LNCS, 3287, 509–516.
Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.
Wang, Y., Fevig, R., & Schultz, R. (2008). Super-resolution mosaicking of UAV surveillance video. In Proceedings of 15th IEEE International Conference on Image Processing (ICIP), San Diego, California, USA, 1, 345–348.
Wang, L., Xiang, S., Meng, G., Wu, H., & Pan, C. (2013). Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation. IEEE Transactions on Circuits and Systems for Video Technology, 23(8), 1289–1299.
Woods, N., & Galatsanos, N. (2005). Non-stationary approximate Bayesian super-resolution using a hierarchical prior model. In Proceedings of IEEE International Conference on Image Processing (ICIP), Genova, Italy, 1, 37–40.
Zhang, X., & Wu, X. (2008). Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Transactions on Image Processing, 17(6), 887–896.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Morera-Delfín, L., Pinto-Elías, R., Ochoa-Domínguez, HdJ. (2018). Overview of Super-resolution Techniques. In: Vergara Villegas, O., Nandayapa , M., Soto , I. (eds) Advanced Topics on Computer Vision, Control and Robotics in Mechatronics. Springer, Cham. https://doi.org/10.1007/978-3-319-77770-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-77770-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77769-6
Online ISBN: 978-3-319-77770-2
eBook Packages: EngineeringEngineering (R0)