Skip to main content

Abstract

In the last three decades, multi-frame and single-frame super-resolution and reconstruction techniques have been receiving increasing attention because of the large number of applications that many areas have found when increasing the resolution of their images. For example, in high-definition television, high-definition displays have reached a new level and resolution enhancement cannot be ignored; in some remote sensing applications, the pixel size is a limitation; and in medical imaging, the details are important for a more accurate diagnostic or acquiring high-resolution images while reducing the time of radiation to a patient. Some of the problems faced in this area, that in the future require dealing more effectively, are the inadequate representation of edges, inaccurate motion estimation between images, sub-pixel registration, and computational complexity among others. In this chapter, an overview of the most important methods classified into two taxonomies, multiple- and single-image super-resolution, is given. Moreover, two new techniques for single-image SR are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Becker, S., Candès, E., & Grant, M. (2011). Templates for convex cone problems with applications to sparse signal recovery. Mathematical Programming Computation, 3, 165–218.

    Article  MathSciNet  Google Scholar 

  • Belekos, S., Galatsanos, N., & Katsaggelos, A. (2010). Maximum a posteriori video super-resolution using a new multichannel image prior. IEEE Transactions on Image Processing, 19(6), 1451–1464.

    Article  MathSciNet  Google Scholar 

  • Capel, D., & Zisserman, A. (1998). Automated mosaicing with super-resolution zoom. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Santa Barbara, California, USA, 1, 885–891.

    Google Scholar 

  • Cheeseman, P., Kanefsky, B., Kraft, R., Stutz, J., & Hanson, R. (1994). Super-resolved surface reconstruction from multiple images (1st ed.). London, United Kingdom: Springer Science + Business Media.

    MATH  Google Scholar 

  • Dai, S., Han, M., Xu, W., Wu, Y., & Gong, Y. (2007). Soft edge smooth-ness prior for alpha channel super resolution. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, Minnesota, USA, 1, 1–8.

    Google Scholar 

  • Dai, S., Han, M., Xu, W., Wu, Y., Gong, Y., & Katsaggelos, A. (2009). SoftCuts: a soft edge smoothness prior for color image super-resolution. IEEE Transactions on Image Processing, 18(5), 969–981.

    Article  MathSciNet  Google Scholar 

  • Debes, C., Wedi, T., Brown, C., & Zoubir, A. (2007). Motion estimation using a joint optimisation of the motion vector field and a super-resolution reference image. In Proceedings of IEEE International Conference on Image Processing (ICIP), San Antonio, Texas, USA, 2, 479–500.

    Google Scholar 

  • Dong, W., Zhang, L., Shi, G., & Wu, X. (2011). Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 20(7), 1838–1856.

    Article  MathSciNet  Google Scholar 

  • Elad, M., & Hel-Or, Y. (2001). A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Transactions on Image Processing, 10(8), 1187–1193.

    Article  Google Scholar 

  • Farsiu, S., Robinson, D., Elad, M., & Milanfar, P. (2003). Robust shift and add approach to super-resolution. In Proceedings of SPIE Conference on Applications of Digital Signal and Image Processing, San Diego, California, USA, 1, 121–130.

    Google Scholar 

  • Farsiu, S., Robinson, D., Elad, M., & Milanfar, P. (2004). Fast and robust multi-frame super-resolution. IEEE Transactions on Image Processing, 13(10), 327–1344.

    Article  Google Scholar 

  • Farsiu, S., Elad, M., & Milanfar, P. (2006). A practical approach to super-resolution. In Proceedings of SPIE Conference on Visual Communications and Image Processing, San Jose, California, USA, 6077, 1–15.

    Google Scholar 

  • Huang, K., Hu, R., Han, Z., Lu, T., Jiang, J., & Wang, F. (2011). A face super-resolution method based on illumination invariant feature. In Proceedings of IEEE International Conference on Multimedia Technology (ICMT), Hangzhou, China, 1, 5215–5218.

    Google Scholar 

  • Hung, K., & Siu, W. (2012). Robust soft-decision interpolation using weighted least squares. IEEE Transactions on Image Processing, 21(3), 1061–1069.

    Article  MathSciNet  Google Scholar 

  • Irani, M., & Peleg, S. (1990). Super-resolution from image sequences. In Proceedings of 10th IEEE International Conference on Pattern Recognition, Atlantic City, New Jersey, USA, 1,115–120.

    Google Scholar 

  • Irani, M., & Peleg, S. (1991). Improving resolution by image registration. CVGIP Graphical Models and Image Processing, 53(3), 231–239.

    Article  Google Scholar 

  • Irani. M., & Peleg, S. (1992). Image sequence enhancement using multiple motions analysis. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Champaign, Illinois, USA, 1, 216–222.

    Google Scholar 

  • Irani, M., & Peleg, S. (1993). Motion analysis for image enhancement: Resolution, occlusion, and transparency. Journal of Visual Communication and Image Representation, 4(4), 324–335.

    Article  Google Scholar 

  • Jung, C., Jiao, L., Liu, B., & Gong, M. (2011a). Position-patch based face hallucination using convex optimization. IEEE Signal Processing Letters, 18(6), 367–370.

    Article  Google Scholar 

  • Jung, M., Bresson, X., Chan, T., & Vese, L. (2011b). Nonlocal Mumford-Shah regularizers for color image restoration. IEEE Transactions on Image Processing, 20(6), 1583–1598.

    Article  MathSciNet  Google Scholar 

  • Keren, D., Peleg, S., & Brada, R. (1998). Image sequence enhancement using subpixel displacements. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Ann Arbor, Michigan, USA, 1, 742–746.

    Google Scholar 

  • Kim, K., & Kwon, Y. (2008). Example-based learning for single-image super-resolution. Pattern Recognition, LNCS, 5096, 456–465.

    Article  MathSciNet  Google Scholar 

  • Kim, K., & Kwon, Y. (2010). Single-image super-resolution using sparse regression and natural image prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(6), 1127–1133.

    Article  Google Scholar 

  • Kong, D., Han, M., Xu, W., Tao, H., & Gong, Y. (2006). A conditional random field model for video super-resolution. In Proceedings of 18th International Conference on Pattern Recognition (ICPR), Hong Kong, China, 1, 619–622.

    Google Scholar 

  • Kumar, S., & Nguyen, T. (2010). Total subset variation prior. In Proceedings of IEEE International Conference on Image Processing (ICIP), Hong Kong, China, 1, 77–80.

    Google Scholar 

  • Li, X., & Orchard, M. (2001). New edge-directed interpolation. IEEE Transactions on Image Processing, 10(10), 1521–1527.

    Article  Google Scholar 

  • Li, F., Jia, X., & Fraser, D. (2008). Universal HMT based super resolution for remote sensing images. In Proceedings of 15th IEEE International Conference on Image Processing (ICIP), San Diego, California, USA, 1, 333–336.

    Google Scholar 

  • Li, X., Lam, K., Qiu, G., Shen, L., & Wang, S. (2009). Example-based image super-resolution with class-specific predictors. Journal of Visual Communication and Image Representation, 20(5), 312–322.

    Article  Google Scholar 

  • Li, X., Hu, Y., Gao, X., Tao, D., & Ning, B. (2010). A multi-frame image super-resolution method. Signal Processing, 90(2), 405–414.

    Article  Google Scholar 

  • Liu, C., & Sun, D. (2011). A Bayesian approach to adaptive video super resolution. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, Colorado, USA, 1, 209–216.

    Google Scholar 

  • Mallat, S., & Yu, G. (2010). Super-resolution with sparse mixing estimators. IEEE Transactions on Image Processing, 19(11), 2889–2900.

    Article  MathSciNet  Google Scholar 

  • Martins, A., Homem, M., & Mascarenhas, N. (2007). Super-resolution image reconstruction using the ICM algorithm. In Proceedings of IEEE International Conference on Image Processing (ICIP), San Antonio, Texas, USA, 4, 205–208.

    Google Scholar 

  • Mochizuki, Y., Kameda, Y., Imiya, A., Sakai, T., & Imaizumi, T. (2011). Variational method for super-resolution optical flow. Signal Processing, 91(7), 1535–1567.

    Article  Google Scholar 

  • Morera, D. (2015). Determining parameters for images amplification by pulses interpolation. Ingeniería Investigación y Tecnología, 16(1), 71–82.

    Article  Google Scholar 

  • Morera, D. (2014). Amplification by pulses interpolation with high frequency restrictions for conservation of the structural similitude of the image. International Journal of Signal Processing, Image Processing and Pattern Recognition, 7(4), 195–202.

    Article  Google Scholar 

  • Omer, O., & Tanaka, T. (2010). Image superresolution based on locally adaptive mixed-norm. Journal of Electrical and Computer Engineering, 2010, 1–4.

    Article  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  • Peyre, G., Bougleux, S., & Cohen, L. (2008). Non-local regularization of inverse problems. In Proceedings of European Conference on Computer Vision, Marseille, France, 5304, 57–68.

    Google Scholar 

  • Pickup, L., Capel, D., & Roberts, S. (2006). Bayesian image super-resolution, continued. Neural Information Processing Systems, 19, 1089–1096.

    Google Scholar 

  • Pickup, L. (2007). Machine learning in multi-frame image super-resolution. Ph.D. thesis, University of Oxford.

    Google Scholar 

  • Prendergast, R., & Nguyen, T. (2008). A block-based super-resolution for video sequences. In Proceedings of 15th IEEE International Conference on Image Processing (ICIP), San Diego, California, USA, 1, 1240–1243.

    Google Scholar 

  • Purkait, P., & Chanda, B. (2012). Super resolution image reconstruction through Bregman iteration using morphologic regularization. IEEE Transactions on Image Processing, 21(9), 4029–4039.

    Article  MathSciNet  Google Scholar 

  • Ren, C., He, X., Teng, Q., Wu, Y., & Nguyen, T. (2006). Single image super-resolution using local geometric duality and non-local similarity. IEEE Transactions on Image Processing, 25(5), 2168–2183.

    Article  MathSciNet  Google Scholar 

  • Ren, C., He, X., & Nguyen, T. (2017). Single image super-resolution via adaptive high-dimensional non-local total variation and adaptive geometric feature. IEEE Transactions on Image Processing, 26(1), 90–106.

    MathSciNet  Google Scholar 

  • Schultz, R., & Stevenson, R. (1994). A Bayesian approach to image expansion for improved definition. IEEE Transactions on Image Processing, 3(3), 233–242.

    Article  Google Scholar 

  • Shao, W., & Wei, Z. (2008). Edge-and-corner preserving regularization for image interpolation and reconstruction. Image and Vision Computing, 26(12), 1591–1606.

    Article  Google Scholar 

  • Song, H., Zhang, L., Wang, P., Zhang, K., & Li, X. (2010). An adaptive L1–L2 hybrid error model to super-resolution. In: Proceedings of 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China, 1, 2821–2824.

    Google Scholar 

  • Sun, J., Xu, Z., & Shum, H. (2008). Image super-resolution using gradient profile prior. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, 1, 1–8.

    Google Scholar 

  • Tappen, M., Russell, B., & Freeman, W. (2003). Exploiting the sparse derivative prior for super-resolution and image demosaicing. In Proceedings of IEEE 3rd International Workshop on Statistical and Computational Theories of Vision (SCTV), Nice, France, 1, 1–24.

    Google Scholar 

  • Villena, S., Abad, J., Molina, R., & Katsaggelos, A. (2004). Estimation of high resolution images and registration parameters from low resolution observations. Progress in Pattern Recognition, Image Analysis and Applications, LNCS, 3287, 509–516.

    Article  Google Scholar 

  • Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Wang, Y., Fevig, R., & Schultz, R. (2008). Super-resolution mosaicking of UAV surveillance video. In Proceedings of 15th IEEE International Conference on Image Processing (ICIP), San Diego, California, USA, 1, 345–348.

    Google Scholar 

  • Wang, L., Xiang, S., Meng, G., Wu, H., & Pan, C. (2013). Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation. IEEE Transactions on Circuits and Systems for Video Technology, 23(8), 1289–1299.

    Article  Google Scholar 

  • Woods, N., & Galatsanos, N. (2005). Non-stationary approximate Bayesian super-resolution using a hierarchical prior model. In Proceedings of IEEE International Conference on Image Processing (ICIP), Genova, Italy, 1, 37–40.

    Google Scholar 

  • Zhang, X., & Wu, X. (2008). Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation. IEEE Transactions on Image Processing, 17(6), 887–896.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Morera-Delfín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morera-Delfín, L., Pinto-Elías, R., Ochoa-Domínguez, HdJ. (2018). Overview of Super-resolution Techniques. In: Vergara Villegas, O., Nandayapa , M., Soto , I. (eds) Advanced Topics on Computer Vision, Control and Robotics in Mechatronics. Springer, Cham. https://doi.org/10.1007/978-3-319-77770-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77770-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77769-6

  • Online ISBN: 978-3-319-77770-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics