Skip to main content

General Introduction to Monte Carlo and Multi-level Monte Carlo Methods

  • Chapter
  • First Online:
Uncertainty Management for Robust Industrial Design in Aeronautics

Abstract

In this chapter, we present a general introduction to Monte Carlo (MC)-based methods, sampling methodologies, stratification methods, and variance reduction techniques. In the first part, we will discuss the theoretical basis and the convergence proprieties of MC methods. The next part is devoted to pseudorandom and quasi-random number generation, the generation of random variables and the application of stratification. It is followed by techniques for correlation and discrepancy control. The third part presents the concept of Latin Hypercube Sampling (LHS). The last part introduces the concept of Multi-Level Monte Carlo (MLMC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroese, D.P., Taimre, T., Botev, Z.I.: Handbook of Monte Carlo Methods. Wiley, Inc. (2011)

    Google Scholar 

  2. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. (TOMACS) 8(1), 3–30 (1998)

    Article  Google Scholar 

  3. L’Ecuyer, P.: Good parameters and implementations for combined multiple recursive random number generators. Oper. Res. 47(1), 159–164 (1999)

    Article  Google Scholar 

  4. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. In: Society for Industrial and Applied Mathematics, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, Pa (1992)

    Google Scholar 

  5. Morokoff, W.J., Caflisch, R.E.: Quasi-Monte Carlo integration. J. Comput. Phys. 122(2), 218–230 (1995)

    Article  MathSciNet  Google Scholar 

  6. Kocis, L., Whiten, W.J.: Computational investigations of low-discrepancy sequences. ACM Trans. Math. Softw. (TOMS) 23(2), 266–294 (1997)

    Article  Google Scholar 

  7. Hong, H.S., Hickernell, F.J.: Algorithm 823: implementing scrambled digital sequences. ACM Trans. Math. Softw. (TOMS) 29(2), 95–109 (2003)

    Article  MathSciNet  Google Scholar 

  8. Cochran, W.G.: Sampling Techniques, 3rd edn. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1977)

    Google Scholar 

  9. Nataf, A.: Dtermination des distributions de probabilits dont les marges sont donns. Comptes Rendus de l’Acadmie des Sciences 225, 42–43 (1962)

    MATH  Google Scholar 

  10. Ditlevsen, O., Madsen, H.O.: Structural Reliability Methods. Wiley, Chichester, New York (1996)

    Google Scholar 

  11. Iman, R.L., Conover, W.J.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. Simul. Comput. 11(3), 311–334 (1982)

    Article  Google Scholar 

  12. Dandekar, R.A., Cohen, M., Kirkendall, N.: Sensitive micro data protection using Latin hypercube sampling technique. In: Inference Control in Statistical Databases, Springer, pp. 117–125 (2002)

    Google Scholar 

  13. Vořechovský, M., Novák, D.: Correlation control in small-sample Monte Carlo type simulations I: a simulated annealing approach. Probab. Eng. Mech. 24(3), 452–462 (2009)

    Article  Google Scholar 

  14. Liefvendahl, M., Stocki, R.: A study on algorithms for optimization of Latin hypercubes. J. Stat. Plan. Inference 136(9), 3231–3247 (2006)

    Article  MathSciNet  Google Scholar 

  15. Damblin, G., Couplet, M., Iooss, B.: Numerical studies of space-filling designs: optimization of Latin hypercube samples and subprojection properties. J. Simul. 7(4), 276–289 (2013)

    Article  Google Scholar 

  16. Hickernell, F.: A generalized discrepancy and quadrature error bound. Math. Comput. Am. Math. Soc. 67(221), 299–322 (1998)

    Article  MathSciNet  Google Scholar 

  17. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (1979)

    Article  MathSciNet  Google Scholar 

  18. Iman, R.L., Conover, W.: Small sample sensitivity analysis techniques for computer models with an application to risk assessment. Commun. Stat. Theory Methods 9(17), 1749–1842 (1980)

    Article  MathSciNet  Google Scholar 

  19. Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143–151 (1987)

    Article  MathSciNet  Google Scholar 

  20. Manteufel, R.D.: Evaluating the convergence of Latin hypercube sampling. In: 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2000)

    Google Scholar 

  21. Heinrich, S.: Monte Carlo complexity of global solution of integral equations. J. Complex. 14(2), 151–175 (1998)

    Article  MathSciNet  Google Scholar 

  22. Heinrich, S., Sindambiwe, E.: Monte Carlo complexity of parametric integration. J. Complex. 15(3), 317–341 (1999)

    Article  MathSciNet  Google Scholar 

  23. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  Google Scholar 

  24. Barth, A., Lang, A., Schwab, C.: Multilevel Monte Carlo method for parabolic stochastic partial differential equations. BIT Numer. Math. 53(1), 3–27 (2013)

    Article  MathSciNet  Google Scholar 

  25. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

    Article  MathSciNet  Google Scholar 

  26. Charrier, J., Scheichl, R., Teckentrup, A.L.: Finite element error analysis of elliptic PDEs with random coefficients and its application to multi level Monte Carlo methods. SIAM J. Numer. Anal. 51(1), 322–352 (2013)

    Article  MathSciNet  Google Scholar 

  27. Cliffe, K., Giles, M., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)

    Article  MathSciNet  Google Scholar 

  28. Teckentrup, A., Scheichl, R., Giles, M., Ullmann, E.: Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients. Numer. Math. 125(3), 569–600 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, R. et al. (2019). General Introduction to Monte Carlo and Multi-level Monte Carlo Methods. In: Hirsch, C., Wunsch, D., Szumbarski, J., Łaniewski-Wołłk, Ł., Pons-Prats, J. (eds) Uncertainty Management for Robust Industrial Design in Aeronautics . Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-77767-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77767-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77766-5

  • Online ISBN: 978-3-319-77767-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics