A Dialogical Conception of Explanation in Mathematical Proofs

  • Catarina Dutilh NovaesEmail author
Part of the ICME-13 Monographs book series (ICME13Mo)


In this chapter, I argue that the issue of explanatoriness in mathematical proofs can be fruitfully addressed within the dialogical conceptualization of proofs that I have been developing in recent years. The key idea is to emphasize the observation that a proof is a piece of discourse aimed at an intended audience, with the intent to produce explanatory persuasion. This approach explains both why explanatory proofs are to be preferred over non- or less explanatory ones, and why explanatoriness is an audience-relative property of a proof. This account is also able to clarify a number of features of mathematical practice.


Explanation Mathematical proofs Dialogues 



Thanks to Jonathan Schaffer for helpful comments on an earlier draft.


  1. Aberdein, A. (2013). Commentary on: Michel Dufour’s “argument and explanation in mathematics”. In Virtues of Argumentation. Proceedings of the 10th International Conference of the Ontario Society for the Study of Argumentation (OSSA) (pp. 1–6). Windsor: OSSA.Google Scholar
  2. Aberdein, A., & Dove, I. J. (2009). Mathematical argumentation (special issue). Foundations of Science, 14(1–2).Google Scholar
  3. Aberdein, A., & Dove, I. (2013). The argument of mathematics. Dordrecht: Springer.CrossRefGoogle Scholar
  4. Alibert, D., & Thomas, M. (1991). Research on mathematical proof. In D. Tall (Ed.), Advanced mathematical thinking (pp. 215–230). New York: Kluwer.Google Scholar
  5. Andersen, L. (2017). Social epistemology and mathematical practice: Dependence, peer review, and joint commitments. Aarhus: University of Aarhus, PhD thesis.Google Scholar
  6. Auslander, J. (2008). On the roles of proof in mathematics. In B. Gold, & R. Simons (Eds.), Proof and other dilemmas: Mathematics and Philosophy (pp. 61–77). Mathematical Association of America.Google Scholar
  7. Avigad, J. (2008). Understanding proofs. In P. Mancosu (Ed.), The philosophy of mathematical practice. Oxford: Oxford University Press.Google Scholar
  8. Azzouni, J. (2007). How and why mathematics is unique as a social practice. In B. van Kerkhove & J. van Bendegem (Eds.), Perspectives on mathematical practices (pp. 3–23). Berlin: Springer.CrossRefGoogle Scholar
  9. Balacheff, N. (1991). The benefits and limits of social interaction: The case of mathematical proof. In A. Bishop (Ed.), Mathematical knowledge: Its growth through teaching (pp. 175–192). Dordrecht: Kluwer.Google Scholar
  10. Baracco, F. (2017). Explanatory proofs in mathematics: Noneism, Someism, and Allism. Logique & Analyse, 67–86.Google Scholar
  11. Bueno, O. (2009). Functional beauty: Some applications, some worries. Philosophical Books, 50, 47–54.CrossRefGoogle Scholar
  12. Colyvan, M. (2010). There is no easy road to nominalism. Mind, 119, 285–306.CrossRefGoogle Scholar
  13. Colyvan, M. (2012). Introduction to the philosophy of mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Davis, P., & Hersh, R. (1982). The mathematical experience. Boston: Houghton Mifflin.Google Scholar
  15. Dawson, J. W., Jr. (2006). Why do mathematicians re-prove theorems? Philosophia Mathematica, 14, 269–286.CrossRefGoogle Scholar
  16. de Regt, H. W. (2009). The epistemic value of understanding. Philosophy of Science, 76(5), 585–597.CrossRefGoogle Scholar
  17. Dufour, M. (2013a). Arguing around mathematical proofs. In A. D. Aberdein (Ed.), The argument of mathematics (pp. 61–76). Dordrecht: Springer.CrossRefGoogle Scholar
  18. Dufour, M. (2013b). Argument and explanation in mathematics. In Virtues of Argumentation. Proceedings of the 10th International Conference of the Ontario Society for the Study of Argumentation (OSSA) (pp. 1–14). Windsor: OSSA.Google Scholar
  19. Dutilh Novaes, C. (2013). Mathematical reasoning and external symbolic systems. Logique & Analyse, 221, 45–65.Google Scholar
  20. Dutilh Novaes, C. (2015). Conceptual genealogy for analytic philosophy. In J. Bell, A. Cutrofello, & P. Livingston (Red.), Beyond the analytic-continental divide: Pluralist philosophy in the twenty-first century. London: Rouutledge.Google Scholar
  21. Dutilh Novaes, C. (2016). Reductio ad absurdum from a dialogical perspective. Philosophical Studies, 173, 2605–2628.CrossRefGoogle Scholar
  22. Ernest, P. (1994). The dialogical nature of mathematics. In P. Ernest (Ed.), Mathematics, education and philosophy: An international perspective (pp. 33–48). London: Falmer Press.Google Scholar
  23. Fisher, M. (1989). Phases and phase diagrams: Gibbs’ legacy today. In G. Mostow, & D. Caldi (Eds.), Proceedings of the Gibbs Symposium: Yale University, May 15–17. American Mathematical Society.Google Scholar
  24. Gijsbers, V. (2017). A quasi-interventionist theory of mathematical explanation. Logique & Analyse, 60, 47–66.Google Scholar
  25. Grimm, S., Baumberger, C., & Ammon, S. (2016). Explaining understanding: New perspectives from epistemology and philosophy of science. London: Routledge.Google Scholar
  26. Hafner, J., & Mancosu, P. (2005). The varieties of mathematical explanation. In P. Mancosu (Ed.), Visualization, explanation and reasoning styles in mathematics (pp. 215–250). Berlin: Springer.CrossRefGoogle Scholar
  27. Hanna, G., Jahnke, H. N., & Pulte, H. (2010). Explanation and proof in mathematics—philosophical and educational perspectives. Berlin: Springer.CrossRefGoogle Scholar
  28. Heinzmann, G. (2006). Naturalizing dialogic pragmatics. In J. van Benthem, G. Heinzman, M. Rebushi, & H. Visser (Eds.), The age of alternative logics (pp. 279–285). Berlin: Springer.Google Scholar
  29. Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in Mathematics, 24, 389–399.CrossRefGoogle Scholar
  30. Hodds, M., Alcock, L., & Inglis, M. (2014). Self-explanation training improves proof comprehension. Journal for Research in Mathematics Education, 45, 62–101.CrossRefGoogle Scholar
  31. Inglis, M., & Aberdein, A. (2015). Beauty is not simplicity: An analysis of mathematicians’ proof appraisals. Philosophia Mathematica, 23, 87–109.CrossRefGoogle Scholar
  32. Inglis, M., & Aberdein, A. (2106). Diversity in proof appraisal. In B. Larvor (Ed.), Mathematical cultures: The London meetings 2012–2014 (pp. 163–179). Basel: Birkhäuser.Google Scholar
  33. Jackson, A. (2002). The world of blind mathematicians. Notices of the AMS, 49, 1246–1251.Google Scholar
  34. Jahnke, H. N. (2010). The conjoint origin of proof and theoretical physics. In G. Hanna, H. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics (pp. 17–32). New York, NY: Springer.CrossRefGoogle Scholar
  35. Khalifa, K. (2012). Inaugurating understanding or repackaging explanation? Philosophy of Science, 79(1), 15–37.CrossRefGoogle Scholar
  36. Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher, & W. Salmon (Eds.), Scientific explanation (pp. 410–505). University of Minnesota Press.Google Scholar
  37. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Lange, M. (2014). Aspects of mathematical explanation: Symmetry, unity, and salience. Philosophical Review, 123, 485–531.CrossRefGoogle Scholar
  39. Lange, M. (2016). Because without cause. Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. Lloyd, G. (1996). Science in antiquity: The Greek and Chinese cases and their relevance to the problem of culture and cognition. In D. Olson & N. C. Torrance, (Eds.), Modes of thought: Explorations in culture and cognition (pp. 15–33). Cambridge: Cambridge University Press.Google Scholar
  41. Malink, M. (2015). The beginnings of formal logic: Deduction in Aristotle’s topics versus prior analytics. Phronesis, 60, 267–309.CrossRefGoogle Scholar
  42. Mancosu, P. (2011). Explanation in mathematics. In E. Zalta (Ed.), Stanford encyclopedia of philosophy. Available at
  43. Mancosu, P., & Pincock, C. (2012). Mathematical explanation. Oxford: Oxford Bibliographies, Oxford University Press.CrossRefGoogle Scholar
  44. Montaño, U. (2014). Explaining beauty in mathematics: An aesthetic theory of mathematics. Dordrecht: Springer.CrossRefGoogle Scholar
  45. Netz, R. (1999). The shaping of deduction in greek mathematics: A study in cognitive history. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Pascual, E., & Oakley, T. (2017). Fictive interaction. In B. Dancygier (Ed.), Cambridge handbook of cognitive linguistics (pp. 347–360). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  47. Paseau, A. (2010). Proofs of the compactness theorem. History and Philosophy of Logic, 31(1), 73–98.CrossRefGoogle Scholar
  48. Pease, A., Lawrence, J., Budzynska, K., Corneli, J., & Reed, C. (2017). Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation. Artificial Intelligence, 246, 181–219.CrossRefGoogle Scholar
  49. Perelman, C., & Olbrechts-Tyteca, L. (1969). The new rhetoric: A treatise on argumentation. Notre Dame, IN: University of Notre Dame Press.Google Scholar
  50. Pincock, C. (2015). The unsolvability of the quintic: A case study in abstract mathematical explanation. Philosophers’ Imprint, 15.Google Scholar
  51. Raman-Sundström, M. (2012). Beauty as fit: An empirical study of mathematical proofs. Proceedings of the British Society for Research into Learning Mathematics, 32, 156–160.Google Scholar
  52. Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7, 5–41.CrossRefGoogle Scholar
  53. Resnik, M., & Kushner, D. (1987). Explanation, independence, and realism in mathematics. British Journal for the Philosophy of Science, 38, 141–158.CrossRefGoogle Scholar
  54. Rota, G. (1997). The phenomenology of mathematical beauty. Synthese, 171–182.Google Scholar
  55. Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton, NJ: Princeton University Press.Google Scholar
  56. Sandborg, D. (1998). Mathematical explanation and the theory of why-questions. British Journal for the Philosophy of Science, 49, 603–624.CrossRefGoogle Scholar
  57. Sørensen, M. H., & Urzyczyn, P. (2006). Lectures on the Curry-Howard isomorphism. New York, NY: Elsevier.Google Scholar
  58. Steiner, M. (1978). Mathematical explanation. Philosophical Studies, 34, 135–151.CrossRefGoogle Scholar
  59. Tetlock, P., & Mitchell, G. (2009). Implicit bias and accountability systems: What must organizations do to prevent discrimination? Research in Organizational Behavior, 29, 3–38.CrossRefGoogle Scholar
  60. Todd, C. (2008). Unmasking the truth beneath the beauty: Why the supposed aesthetic judgements made in science may not be aesthetic at all. International Studies in the Philosophy of Science, 11, 61–79.CrossRefGoogle Scholar
  61. van Fraassen, B. (1977). The pragmatics of explanation. American Philosophical Quarterly, 14, 143–150.Google Scholar
  62. van Fraassen, B. (1980). The scientific image. Oxford: Oxford University Press.CrossRefGoogle Scholar
  63. Walton, D. (2004). A new dialectical theory of explanation. Philosophical Explorations, 7, 71–89.CrossRefGoogle Scholar
  64. Weber, K., Inglis, M., & Mejia-Ramos, J. (2014). How mathematicians obtain conviction: Implications for mathematics instruction and research on epistemic cognition. Educational Psychologis, 49, 36–58.CrossRefGoogle Scholar
  65. Wright, C. (1990). Wittgenstein on mathematical proof. Royal Institute of Philosophy Supplement, 28, 79–99.CrossRefGoogle Scholar
  66. Zelcer, M. (2013). Against mathematical explanation. Journal for General Philosophy of Science/Zeitschrift für Allgemeine Wissenschaftstheorie, 44, 173–192.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhilosophyUniversity of GroningenGroningenThe Netherlands

Personalised recommendations