Skip to main content

Multiphase Flows with Moving Interfaces and Contact Line—Constitutive Modeling

  • Chapter
  • First Online:
Fluid and Thermodynamics

Abstract

A thermodynamic analysis, based on the müllerLiu thermodynamic approach of the second law of thermodynamics, is performed to derive the expressions of the constitutive variables in thermodynamic equilibrium. Non-equilibrium responses are proposed by use of a quasi-linear theory. A set of constitutive equations for the surface and line constitutive quantities is postulated. Some restrictions for the emerging material parameters are derived by means of the minimum conditions of the surface and line entropy productions in thermodynamic equilibrium. Hence, a complete continuum mechanical model to describe excess surface and line physical quantities is formulated. Technically, in the exploitation of the entropy inequality, all field equations are incorporated with Lagrange parameters into the entropy inequality. In the process of its exploitation, the Lagrange parameter of the energy balance is identified with the inverse of the absolute temperature in the bulk, the phase interface, and in the three-phase contact line. Interesting results, among many others, are the Gibbs relations, which are formally the same in the bulk, on the interface and along the contact line, with the pressure in the compressible bulk replaced by the surface tension on the interface and by the line tension along the contact line, see (28.45), (28.87).

This chapter heavily draws from Wang, Oberlack and Zieleniewicz (2013) [40].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Additional symbols are the same as in Chap. 27.

  2. 2.

    This argument must be applied with caution: If \({\varvec{\alpha }}^{({\mathfrak {s}}_{i})}\) has components which are symmetric, \(\alpha _{k \ell }^{({\mathfrak {s}}_{i})} = \alpha _{\ell k}^{({\mathfrak {s}}_{i})}\), then the corresponding component of \({\varvec{a}}^{({\mathfrak {s}}_{i})}\) must be skew-symmetric, \(a_{k \ell }^{({\mathfrak {s}}_{i})} = -a_{\ell k}^{({\mathfrak {s}}_{i})}\).

  3. 3.

    The surfacial Gibbs equation, (28.45), can be easily derived. By means of (28.21)\(_2\) and (28.44)\(_1\), one obtains

    $$\begin{aligned}\eta ^{({\mathfrak {s}}_i)}=\hat{\eta }^{({\mathfrak {s}}_i)}\left( \rho ^{({\mathfrak {s}}_i)},\varTheta ^{({\mathfrak {s}}_i)}\right) = \frac{1}{\varTheta ^{({\mathfrak {s}}_i)}}\left( u^{({\mathfrak {s}}_i)}-\psi ^{({\mathfrak {s}}_i)}\right) . \end{aligned}$$

    Taking the total differential of \(\eta ^{({\mathfrak {s}}_i)}\) yields

    $$\begin{aligned}\mathrm {d}\eta ^{({\mathfrak {s}}_i)}= & {} -\frac{1}{(\varTheta ^{({\mathfrak {s}}_i)})^2}\left( u^{({\mathfrak {s}}_i)}-\psi ^{({\mathfrak {s}}_i)}\right) \mathrm {d}\varTheta ^{({\mathfrak {s}}_i)} + \frac{1}{\varTheta ^{({\mathfrak {s}}_i)}}\left( \mathrm {d}u^{({\mathfrak {s}}_i)}-\mathrm {d}\psi ^{({\mathfrak {s}}_i)}\right) \\= & {} -\frac{1}{(\varTheta ^{({\mathfrak {s}}_i)})^2}\left( u^{({\mathfrak {s}}_i)}-\psi ^{({\mathfrak {s}}_i)}\right) \mathrm {d}\varTheta ^{({\mathfrak {s}}_i)} \\&+ \frac{1}{\varTheta ^{({\mathfrak {s}}_i)}}\left( \mathrm {d}u^{({\mathfrak {s}}_i)}-\frac{\partial \psi ^{({\mathfrak {s}}_i)}}{\partial \rho ^{({\mathfrak {s}}_i)}}\mathrm {d}\rho ^{({\mathfrak {s}}_i)}-\frac{\partial \psi ^{({\mathfrak {s}}_i)}}{\partial \varTheta ^{({\mathfrak {s}}_i)}}\mathrm {d}\varTheta ^{({\mathfrak {s}}_i)}\right) \\= & {} -\frac{1}{(\varTheta ^{({\mathfrak {s}}_i)})^2}\left( u^{({\mathfrak {s}}_i)}-\psi ^{({\mathfrak {s}}_i)}+\varTheta ^{({\mathfrak {s}}_i)} \frac{\partial \psi ^{({\mathfrak {s}}_i)}}{\partial \varTheta ^{({\mathfrak {s}}_i)}} \right) \mathrm {d}\varTheta ^{({\mathfrak {s}}_i)} \\&+ \frac{1}{\varTheta ^{({\mathfrak {s}}_i)}} \mathrm {d}u^{({\mathfrak {s}}_i)}+ \frac{1}{\varTheta ^{({\mathfrak {s}}_i)}}\left( (\rho ^{({\mathfrak {s}}_i)})^2\frac{\partial \psi ^{({\mathfrak {s}}_i)}}{\partial \rho ^{({\mathfrak {s}}_i)}}\right) \mathrm {d}\left( \frac{1}{\rho ^{({\mathfrak {s}}_i)}}\right) \\= & {} \frac{1}{\varTheta ^{({\mathfrak {s}}_i)}}\left( \mathrm {d} u^{({\mathfrak {s}}_i)}-\sigma ^{({\mathfrak {s}}_i)}\mathrm {d}\left( \frac{1}{\rho ^{({\mathfrak {s}}_i)}}\right) \right) . \end{aligned}$$

    In the last step, relations (28.21)\(_2\), (28.35), and (28.43) have been used.

  4. 4.

    The derivations of the first conditions, (28.68) and (28.69)\(_1\), are straight. However, the derivations of (28.69)\(_2\) and (28.70) are somewhat tedious and complicated by choosing various special functions for \(\varvec{f}\). Here, we refrain from providing more details.

  5. 5.

    The Gibbs equation for the contact line, (28.87), can also be proved as demonstrated for the surfacial Gibbs equation, (28.45) in footnote 3 on page 429.

  6. 6.

    Here, the material historic dependence on the material time derivative \(\dot{\varvec{D}}^{({\mathfrak s}_i)}\) does not satisfy the requirement of material objectivity. A more reasonable variable describing the dependence of the materially deformational history may be the material objective time derivatives of \({\varvec{D}} ^{({\mathfrak s}_i)}\), e.g., the upper-convected time derivative (or Oldroyd derivative) \({\mathop {\mathbf {D}}\limits ^{\triangledown }}\,\!\! ^{({\mathfrak s}_i)}\) , the lower-convected time derivative \({\mathop {\mathbf {D}}\limits ^{\vartriangle }}\,\!\! ^{({\mathfrak s}_i)}\) or Jaumann time derivatives \({\mathop {\mathbf {D}}\limits ^{\circ }}\,\!\! ^{({\mathfrak s}_i)}\), respectively, defined by

    $$\begin{aligned} \text {Upper-convected time derivative}&{\mathop {\mathbf {D}}\limits ^{\triangledown }}\,\!\! ^{({\mathfrak s}_i)}=\dot{\mathbf {D}}^{({\mathfrak s}_i)}- \mathbf {L}^{({\mathfrak s}_i)}\mathbf {D}^{({\mathfrak s}_i)} - \mathbf {D}^{({\mathfrak s}_i)}(\mathbf {L}^{({\mathfrak s}_i)})^T,\\ \text {Lower-convected time derivative}&{\mathop {\mathbf {D}}\limits ^{\vartriangle }}\,\!\! ^{({\mathfrak s}_i)}=\dot{\mathbf {D}}^{({\mathfrak s}_i)}+ (\mathbf {L}^{({\mathfrak s}_i)})^T\mathbf {D}^{({\mathfrak s}_i)} + \mathbf {D}^{({\mathfrak s}_i)}\mathbf {L}^{({\mathfrak s}_i)},\\ {\textsc {Jaumann}}\;\text {time derivative}&{\mathop {\mathbf {D}}\limits ^{\circ }}\,\!\! ^{({\mathfrak s}_i)}=\dot{\mathbf {D}}^{({\mathfrak s}_i)}- \mathbf {W}^{({\mathfrak s}_i)}\mathbf {D}^{({\mathfrak s}_i)} + \mathbf {D}^{({\mathfrak s}_i)}\mathbf {W}^{({\mathfrak s}_i)}, \end{aligned}$$

    where \(\mathbf {L}^{({\mathfrak s}_i)}\) is the velocity gradient, \(\mathbf {D}^{({\mathfrak s}_i)}\) the rate of deformation tensor and \(\mathbf {W}^{({\mathfrak s}_i)}\) is the spin tensor. If we would employ these materially objective time derivatives, the following evaluation of the entropy principle would become much more complicated, if they would be still achievable by hand. Here, we refrain doing this.

  7. 7.

    These derivations are fairly tedious and complicated. Here, we refrain from providing more details.

References

  1. Alts, T., Hutter, K.: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water. Part II: thermodynamics. J. Non-Equil. Thermodyn. 13, 250–289 (1988)

    Google Scholar 

  2. Alts, T., Hutter, K.: Continuum description of the dynamics and thermodynamics of phase boundaries between ice and water. Part III: Thermostatics and consequences. J. Non-Equil. Thermodyn. 13, 301–329 (1988)

    Google Scholar 

  3. Baehr, H.D.: Thermodynamik. Springer, Heidelberg (2009)

    Book  Google Scholar 

  4. Bargmann, S., Steinmann, P.: Classical results for a non-classical theory: remarks on thermodynamic relations in Green-Naghdi thermo-hyperelasticity. Continuum Mech. Thermodyn. 19(1–2), 59–66 (2007)

    Article  Google Scholar 

  5. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat condition and viscosity. Arch. Rat. Mech. Anal. 13, 167–178 (1963)

    Article  Google Scholar 

  6. Ehlers, W.: Poröse Medien, ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Universität-Gesamthochschule Essen, Habilitation (1989)

    Google Scholar 

  7. Fang, C., Wang, Y., Hutter, K.: Shearing flows of a dry granular material - hypoplastic constitutive theory and numerical simulations. Int. J. Numer. Anal. Meth. Geomech. 30, 1409–1437 (2006)

    Article  Google Scholar 

  8. Fang, C., Wang, Y., Hutter, K.: A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Part I: a class of constitutive models. Continuum Mech. Thermodyn. 17(8), 545–576 (2006)

    Article  Google Scholar 

  9. Fang, C., Wang, Y., Hutter, K.: A thermo-mechanical continuum theory with internal length for cohesionless granular materials. Part II: non-equilibrium postulates and numerical simulations of simple shear, plane Poiseuille and gravity driven problems. Continuum Mech. Thermodyn. 17(8), 577–607 (2006)

    Article  Google Scholar 

  10. Fang, C., Wang, Y., Hutter, K.: A unified evolution equation for the Cauchy stress tensor of an isotropic elasto-visco-plastic material. I. On thermodynamically consistent evolution. Continuum Mech. Thermodyn. 19, 423–440 (2008)

    Article  Google Scholar 

  11. Grad, H.: Principles of the Kinetic Theory. Handbuch der Physik XII. Springer, Berlin (1958)

    Google Scholar 

  12. Hutter, K.: The foundation of thermodynamics, its basic postulates and implications. Acta Mechanica 27, 1–54 (1977)

    Article  Google Scholar 

  13. Hutter, K.: The physics of ice-water phase change surfaces. In: Kosinski, W., Murdoch, A.I. (eds.): Modelling Macroscopic Phenomena at Liquid Boundaries. CISM Course 318, Springer, Vienna (1991)

    Google Scholar 

  14. Hutter, K., Jöhnk, K., Svendsen, B.: On interfacial transition conditions in two-phase gravity flow. Z angew. Math. Phys. 45, 746–762 (1994)

    Article  Google Scholar 

  15. Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling. Springer, Berlin (2004)

    Book  Google Scholar 

  16. Hutter, K., Wang, Y.: Phenomenological thermodynamics and entropy principles. In: Greven, A., Keller, G., Warnecke, G. (eds.) Entropy. Princeton University Press, Princeton, pp. 57–78 (2003). ISBN 0-691-11338-6

    Google Scholar 

  17. Hutter, K., Wang, Y.: Fluid and Thermodynamics. Volume 1: Basic Fluid Mechanics, P. 639. Springer, Berlin (2016). ISBN: 978-3319336329

    Google Scholar 

  18. Hutter, K., Wang, Y.: Fluid and Thermodynamics. Volume II: Advanced Fluid Mechanics and Thermodynamic Fundamentals, p. 633. Springer, Berlin (2016). ISBN: 978-3-319-33635-0

    Google Scholar 

  19. Kirchner, N.: Thermodynamically consistent modelling of abrasive granular materials, Part I: Non-equilibrium theory. Proc. R. Soc. Lond. A 458, 2153–2176 (2002)

    Article  Google Scholar 

  20. Kirchner, N., Teufel, A.: Thermodynamically consistent modelling of abrasive granular materials Part II: Thermodynamic equilibrium and applications to steady shear flows. Proc. R. Soc. Lond. A 458, 3053–3077 (2002)

    Article  Google Scholar 

  21. Liu, I.-Shih: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rat. Mech. Anal. 46, 131–148 (1972)

    Google Scholar 

  22. Liu, I-Shih and Müller, I.: Thermodynamics of mixtures of fluids. In: Truesdell, C. (ed): Rational thermodynamics, pp. 264–285. New York, Springer (1984)

    Google Scholar 

  23. Luca, I., Fang, C., Hutter, K.: A thermodynamic model of turbulent motions in a granular material. Continuum Mech. Thermodyn. 16, 363–390 (2004)

    Article  Google Scholar 

  24. Müller, I.: On the entropy inequality. Arch. Rat. Mech. Anal. 26, 118–141 (1967)

    Article  Google Scholar 

  25. Müller, I.: Die Kältefunktion, eine universelle Funktion in der Thermodynamik viskoser wärmeleitender Flüssigkeiten. Arch. Rat. Mech. Anal. 40, 1–36 (1971)

    Article  Google Scholar 

  26. Müller, I.: Thermodynamik - Grundlagen der Materialtheorie. Bertelsman Universitätsverlag, Düsseldorf (1972)

    Google Scholar 

  27. Müller, I.: Thermodynamics. Pitman, London (1985)

    Google Scholar 

  28. Sadiki, A., Bauer, W., Hutter, K.: Thermodynamically consistent coefficient calibration in nonlinear and anisotropic closure models for turbulence. Continuum Mech. Thermodyn. 12, 131–149 (2000)

    Article  Google Scholar 

  29. Spurk, J.H.: Fluid Mechanics. Springer, Berlin (1997)

    Book  Google Scholar 

  30. Svendsen, B., Hutter, K.: On the thermodymics of a mixture of isotropic materials with constraints. Int. J. Eng. Sci. 33, 2021–2054 (1995)

    Article  Google Scholar 

  31. Svendsen, B., Hutter, K., Laloui, L.: Constitutive models for granular materials including quasi-static frictional behaviour: toward a thermodynamic theory of plasticity. Continuum Mech. Thermodyn. 4, 263–275 (1999)

    Article  Google Scholar 

  32. Svendsen, B., Chanda, T.: Continuum thermodynamic formulation of models for electromagnetic thermoinelastic solids with application in electromagnetic metal forming. Continuum Mech. Thermodyn. 17, 1–16 (2005)

    Article  Google Scholar 

  33. Wang, C.C.: A new representation theorem for isotropic functions: An answer to Professor G. F. Smith’s criticism of my papers on representations for isotropic functions. Part I. Arch. Rat. Mech. Anal. 36(3), 166–197 (1970)

    Google Scholar 

  34. Wang, C.C.: A new representation theorem for isotropic functions: An answer to Professor G.F. Smith’s criticism of my papers on representations for isotropic functions. Part II. Arch. Rat. Mech. Anal. 36(3), 198–223 (1970)

    Google Scholar 

  35. Wang, Y., Hutter, K.: Comparison of two entropy principles and their applications in granular flows with/without fluid. Arch. Mech. 51, 605–632 (1999)

    Google Scholar 

  36. Wang, Y., Hutter, K.: Shearing flows in a Goodman-Cowin type granular material - theory and numerical results. Part. Sci. Tech. 17, 97–124 (1999)

    Article  Google Scholar 

  37. Wang, Y., Hutter, K.: A constitutive model for multi-phase mixtures and its application in shearing flows of saturated soil-fluid mixtures. Granul. Matter 1, 163–181 (1999)

    Article  Google Scholar 

  38. Wang, Y., Hutter, K.: A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheologica Acta 38, 214–223 (1999)

    Article  Google Scholar 

  39. Wang, Y., Oberlack, M.: A thermodynamic model of multiphase flows with moving interfaces and contact line. Continuum Mech. Thermodyn. 23, 409–433 (2011)

    Article  Google Scholar 

  40. Wang, Y., Oberlack, M., Zieleniewicz, A.: Constitutive modeling of multiphase flows with moving interfaces and contact line. Continuum Mech. Thermodyn. 25, 705–725 (2013)

    Article  Google Scholar 

  41. Wilmanski, K.: Continuum Thermodynamics, Part 1: Foundations. World Scientific Pub Co. (2009)

    Google Scholar 

  42. Wood, L.C.: The bogus axioms of continuum mechanics. Bull. Math. Appl. 17, 98–102 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hutter, K., Wang, Y. (2018). Multiphase Flows with Moving Interfaces and Contact Line—Constitutive Modeling. In: Fluid and Thermodynamics. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-77745-0_28

Download citation

Publish with us

Policies and ethics