Models of Data Quality

  • Zane Bicevska
  • Janis Bicevskis
  • Ivo OditisEmail author
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 311)


The research proposes a new approach to data quality management presenting three groups of DSL (Domain Specific Language). The first language group uses concept of data object in order to describe data to be analysed, the second group describes the requirements on data quality, and the third group describes data quality management process. The proposed approach deals with development of executable quality specifications for each kind of data objects. The specification can be executed step-by-step according to business process descriptions, ensuring the gradual accumulation of data in the database and data quality verification according to the specific use case.


Data quality Domain-specific modeling languages Executable business processes 



The research leading to these results has received funding from the research project “Competence Centre of Information and Communication Technologies” of EU Structural funds, contract No. signed between IT Competence Centre and Central Finance and Contracting Agency, Research No. 1.8 “Data Quality Management by using Executable Business Process Models”.


  1. 1.
    Veregin, H.: Data quality parameters. In: Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (eds.) New Developments in Geographical Information Systems: Principles, Techniques, Management and Applications, pp. 177–189. Wiley, Hoboken (2005)Google Scholar
  2. 2.
    ISO 9001:2015: Quality management principles.
  3. 3.
    Bicevska, Z., Bicevskis, J., Oditis, I.: Domain-specific characteristics of data quality. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the 2017 Federated Conference on Computer Science and Information Systems. ACSIS, vol. 11, pp. 999–1003 (2017).
  4. 4.
    Olson, J.E.: Data Quality. The Accuracy dimension. Morgan Kaufmann Publishers, Burlington (2003)Google Scholar
  5. 5.
    Juran, J.M., Gryna, F.M.: Juran’s Quality Control Handbook, 4th ed (1988)Google Scholar
  6. 6.
    Redman, T.C.: Data Quality. The Field Guide. Digital Press, Boston (2001)Google Scholar
  7. 7.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12(4), 5–33 (2016). CrossRefGoogle Scholar
  8. 8.
    OCL 2.0: Object Constraint Language™. Version 2.0.
  9. 9.
  10. 10.
    Features Supported by the Editions of SQL Server 2014. Microsoft Developer Network.
  11. 11.
    What is SSIS? Its advantages and disadvantages. Microsoft Practices.
  12. 12.
  13. 13.
    Becker, D., Jaster, J., Kuperman, J.: Flexible and generic data quality metadata exchange. In: 12th International Conference on Information Quality, Cambridge, MA (2007)Google Scholar
  14. 14.
    The State Information System Register.
  15. 15.
    Administration system for the state information system RIHA.
  16. 16.
  17. 17.
    Model driven architecture.
  18. 18.
    Bārzdiņš, J., Zariņš, A., Čerāns, K., Kalniņš, A., Rencis, E., Lāce, L., Liepiņš, R., Sproģis, A.: GrTP: transformation based graphical tool building platform. In: The 10th International Conference on Model-Driven Engineering Languages and Systems, Models (2007)Google Scholar
  19. 19.
    Bicevskis, J., Bicevska, Z.: Business process models and information system usability. Procedia Comput. Sci. 77, 72–79 (2015). CrossRefGoogle Scholar
  20. 20.
    Ceriņa-Bērziņa, J., Bičevskis, J., Karnītis, Ģ.: Information systems development based on visual domain specific language BiLingva. In: Szmuc, T., Szpyrka, M., Zendulka, J. (eds.) CEE-SET 2009. LNCS, vol. 7054, pp. 124–135. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  21. 21.
    Bicevska, Z., Bicevskis, J., Karnitis, G.: Models of event driven systems. In: Arnicans, G., Arnicane, V., Borzovs, J., Niedrite, L. (eds.) DB&IS 2016. CCIS, vol. 615. Springer, Cham (2016). Google Scholar
  22. 22.
    Ziemba, E. (ed.): Information Technology for Management. LNBIP, vol. 243. Springer, Cham (2016). Google Scholar
  23. 23.
    Łobaziewicz, M.: The role of ICT solutions in the intelligent enterprise performance. In: Ziemba, E. (ed.) AITM/ISM 2016. LNBIP, vol. 277, pp. 120–136. Springer, Cham (2017). CrossRefGoogle Scholar
  24. 24.
    Document Databases—MongoDB.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SIA DIVI GrupaRigaLatvia
  2. 2.University of LatviaRigaLatvia

Personalised recommendations