Multi-tone Sine Wave Generation Achieving the Theoretical Minimum of Peak-To-Average Power Ratio

  • Yuming Zhuang
  • Degang Chen
Chapter

Abstract

Multi-tone signals have been widely used in various applications. One of the bottlenecks is how to maximize the signal power given a ecertain peak range, namely, achieving the minimum peak-to-average power ratio (PAPR). In this chapter, a novel strategy is proposed to achieve the minimum PAPR for multi-tone sine waves. By properly selecting each tone’s frequency and initial phase, the multi-tone sine waves can achieve the minimum amplitude, while maintaining total signal power, without power loss during signal generation. It is rigorously proved that the proposed method can achieve the theoretical minimum of PAPR. Extensive simulation results for various cases are presented that validate the desired property of the generated waveform. Guidelines are provided for practical implementation of the multi-tone sine waves, such as signal and system spectral testing, maximizing power amplifier transmission efficiency, multi-carrier transmission, orthogonal frequency-division multiplexing (OFDM), and other wireless communication systems.

References

  1. 1.
    Y. Zhuang, D. Chen, Multi-tone sine wave generation achieving the theoretical minimum of peak-to-average power ratio, submitted to IEEE Trans. Circ. Syst. I, (2017)Google Scholar
  2. 2.
    M. Burns, G.W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement (Oxford University Press, New York, 2012)Google Scholar
  3. 3.
    W. Kester, Data Conversion Handbook (Analog Devices Inc., Norwood, 2004)Google Scholar
  4. 4.
    M. Kahrs, K. Brandenburg, Applications of Digital Signal Processing to Audio and Acoustics (Springer Science & Business Media, New York, 2006)Google Scholar
  5. 5.
    R. Sobot, Wireless Communication Electronics: Introduction to RF Circuits and Design Techniques (Springer Science & Business Media, New York, 2012)CrossRefGoogle Scholar
  6. 6.
    J. Eberspächer, H.J. Vögel, C. Bettstetter, C. Hartmann, GSM – Architecture, Protocols and Services (Wiley, United Kingdom, 2008)Google Scholar
  7. 7.
    M. Mahoney, DSP-Based Testing of Analog and Mixed-Signal Circuits (Wiley-IEEE Computer Society Press, New York, 1987)Google Scholar
  8. 8.
    K. Kato, F. Abe, K. Wakabayashi, C. Gao, T. Yamada, H. Kobayashi, O. Kobayashi, K. Niitsu, Two-tone signal generation for communication application ADC testing, in Proc. IEEE 21st Asian Test Symposium (ATS), 19–22 Nov. 2012Google Scholar
  9. 9.
    R. Hajji, F. Beauregard, F.M. Ghannouchi, Multi-tone transistor characterization for intermodulation and distortion analysis, in Proceedings of Microwave Symposium Digest, IEEE MTT-S International, 17–21 June 1996Google Scholar
  10. 10.
    J.C. Pedro, N.B. Carvalho, Analysis and measurement of multi-tone intermodulation distortion of microwave frequency converters, in Proceedings of Microwave Symposium Digest, IEEE MTT-S International, 06 Aug. 2002Google Scholar
  11. 11.
    Y. Zhuang, D. Chen, Accurate spectral testing with non-coherent sampling for multi tone applications. IEEE Trans. Circ. Syst. II: Express Brief 64(12), 1357–1361 (2017)Google Scholar
  12. 12.
    L.J. Cimini Jr., Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun. 33(7), 665–675 (1985)CrossRefGoogle Scholar
  13. 13.
    U. Reimers, Digital video broadcasting. IEEE Commun. Mag. 36(10), 104–110 (1998)CrossRefGoogle Scholar
  14. 14.
    B.R. Saltzberg, Comparison of single-carrier and multitone digital modulation for ADSL applications. IEEE Commun. Mag. 36(11), 114–121 (1998)CrossRefGoogle Scholar
  15. 15.
    T. Jiang, Y. Wu, An overview: peak-to-average power ratio reduction techniques for OFDM signals. IEEE Trans. Broadcast. 54(2), 1–12 (2008)CrossRefGoogle Scholar
  16. 16.
    S.H. Han, J.H. Lee, An overview of peak-to-average power ratio reduction techniques for multicarrier transmission. IEEE Pers. Commun. 12(2), 56–65 (2005)MathSciNetGoogle Scholar
  17. 17.
    X. Huang, J. Lu, J. Zheng, K.B. Letaief, J. Gu, Companding transform for reduction in peak-to-average power ratio of OFDM signals. IEEE Trans. on Wirel. Commun. 03(6), 2030–2039 (2004)CrossRefGoogle Scholar
  18. 18.
    R. O'Neill, L.B. Lopes, Envelope variations and spectral splatter in clipped multicarrier signals, in Proceedings of IEEE PIMRC, Toronto, Canada, 1995, pp. 71–75Google Scholar
  19. 19.
    J. Armstrong, Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. IEEE Elect. Lett. 38(8), 246–247 (2002)CrossRefGoogle Scholar
  20. 20.
    P.Y. Fan, X.G. Xia, Block coded modulation for the reduction of the peak to average power ratio in OFDM systems. IEEE Trans. Consum. Electron. 45(4), 1025–1029 (1999)CrossRefGoogle Scholar
  21. 21.
    T. Ginige, N. Rajatheva, K.M. Ahmed, Dynamic spreading code selection method for PAPR reduction in OFDM-CDMA systems with 4-QAM modulation. IEEE Commun. Lett. 5(10), 408–410 (2001)CrossRefGoogle Scholar
  22. 22.
    K. Yang, S. Chang, Peak-to-average power control in OFDM using standard arrays of linear block codes. IEEE Commun. Lett. 7(4), 174–176 (2003)CrossRefGoogle Scholar
  23. 23.
    S.B. Slimane, Reducing the peak-to-average power ratio of OFDM signals through precoding. IEEE Trans. Veh. Technol. 56(2), 686–695 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Tellado, Peak to average power ratio reduction for multicarrier modulation, PhD thesis, University of Stanford, (1999)Google Scholar
  25. 25.
    H. Breiling, S.H. Müller–Weinfurtner, J.B. Huber, SLM peak-power reduction without explicit side information. IEEE Commun. Lett. 5(6), 239–241 (2001)CrossRefGoogle Scholar
  26. 26.
    S. Goff, S. Al-Samahi, B. Khoo, C. Tsimenidis, B. Sharif, Selected mapping without side information for PAPR reduction in OFDM. IEEE Trans. on Wirel. Commun. 8(7), 3320–3325 (2009)CrossRefGoogle Scholar
  27. 27.
    S.H. Müller, J.B. Huber, OFDM with reduced peak–to–average power ratio by optimum combination of partial transmit sequences. IEEE Elect. Lett. 33(5), 368–369 (1997)CrossRefGoogle Scholar
  28. 28.
    S.H. Han, J.H. Lee, PAPR reduction of OFDM signals using a reduced complexity PTS technique. IEEE Sig. Proc. Lett. 11(11), 887–890 (2004)CrossRefGoogle Scholar
  29. 29.
    P. Laaser, Method and apparatus for reducing a crest factor of a multi-tone data signal, U.S. Patent 7,286,605 B2, 23 Oct 2007Google Scholar
  30. 30.
    E.G. Tiedemann Jr, R. Rezaiifar, O. Glauser, T. Chen, Reduced peak-to-average amplitude multichannel link, U.S. Patent 6,535,478 B2, 18 Mar 2003Google Scholar
  31. 31.
    B. Sanchez, G. Vandersteen, R. Bragos, J. Schoukens, Optimal multisine excitation design for broadband electrical impedance spectroscopy. Meas. Sci. Technol. 22(11), 1–11 (2011)CrossRefGoogle Scholar
  32. 32.
    Y. Zhuang, D. Chen, New strategies in removing non-coherency from signals with large distortion to noise ratios. IEEE Trans. Circ. Syst. II: Express Brief 63(12), 1136–1140 (2016)Google Scholar
  33. 33.
    Y. Zhuang, D. Chen, Algorithms for accurate spectral analysis in the presence of arbitrary non-coherency and large distortion. IEEE Trans. Instrum. Meas. 66(10), 2556–2565 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yuming Zhuang
    • 1
  • Degang Chen
    • 2
  1. 1.Qualcomm IncSan DiegoUSA
  2. 2.Iowa State UniversityAmesUSA

Personalised recommendations