Fine Motor Rehabilitation of Children Using the Leap Motion Device – Preliminary Usability Tests

  • Ivón Escobar
  • Andrés Acurio
  • Edwin Pruna
  • Luis Mena
  • Marco Pilatásig
  • José Bucheli
  • Franklin Silva
  • Ricardo Robalino
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)


A 3D virtual system is presented using the leap motion device and Unity 3D software. The system is based on three playful tasks that allow children to recover their fine motor skills in an entertaining way. This system is designed to perform movements like flexion-extension of fingers, supination-pronation, ulnar and radial deviation. The games stimulate visual motor coordination and concentration, which are important factors in the recovery of fine motor skills. The system was used by ten children aged between 6 and 10 years and they have the support of a rehabilitation specialist. After they have completed all the tasks, the SEQ (Single Ease Question) usability test was applied with results (60.8 ± 0.26). The test allows determining that the system has a good acceptance to be used in rehabilitation.


Leap motion Unity 3D Virtual game Fine motor 



We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.


  1. 1.
    Ford-Martin, P.: Psychological tests. In: Krapp, K., Wilson, J. (eds.) The Gale Encyclopedia of Children’s Health: From Infancy to Adolescence. Thomson Gale, Detroit (2006)Google Scholar
  2. 2.
    Luo, Z., Jose, P.E., Huntsinger, C.S., Pigott, T.D.: Fine motor skills and mathematics achievement in East Asian American and European American kindergartners and first graders. Br. J. Dev. Psychol. 25(4), 595–614 (2007)CrossRefGoogle Scholar
  3. 3.
    Feldman, H.M., Chaves-Gnecco, D., Hofkosh, D.: Developmental-behavioral pediatrics. In: Zitelli, B.J., McIntire, S.C., Norwalk, A.J. (eds.) Atlas of Pediatric Diagnosis, 6th edn. Elsevier Saunders, Philadelphia (2012). Chapter 3Google Scholar
  4. 4.
    Newell, K.: Constraints on the development of coordination. In: Wade, M.G., Whiting, H.T. (eds.) Motor Development in Children: Aspects of Coordination and Control. Nijhoff, Dordrecht (1986)Google Scholar
  5. 5.
    Novak, I., Mcintyre, S., Morgan, C., Campbell, L., Dark, L., Morton, N., Stumbles, E., Wilson, S.A., Goldsmith, S.: A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev. Med. Child Neurol. 55(10), 885–910 (2013)CrossRefGoogle Scholar
  6. 6.
    Bleyenheuft, Y., Gordon, A.M.: Precision grip control, sensory impairments and their interactions in children with hemiplegic cerebral palsy: a systematic review. Res. Dev. Disabil. 34(9), 3014–3028 (2013)CrossRefGoogle Scholar
  7. 7.
    Kakebeeke, T.H., Lanzi, S., Zysset, A.E., Arhab, A., Messerli-Bürgy, N., Stuelb, K., Leeger-Aschmann, C.S., Schmutz, E.A., Munsch, S.: Association between body composition and motor performance in preschool children. Obes. Facts 10(5), 420–431 (2017)CrossRefGoogle Scholar
  8. 8.
    Simpson, A., Al Ruwaili, R., Jolley, R., Leonard, H., Geeraert, N., Riggs, K.J.: Fine motor control underlies the association between response inhibition and drawing skill in early development. Child Dev. (2017)Google Scholar
  9. 9.
    Mayes, S.D., Calhoun, S.L., Learning, A.: Writing, and processing speed in typical children and children with ADHD, autism, anxiety, depression, and oppositional-defiant disorder. Child Neuropsychol. 13(6), 469–493 (2007)CrossRefGoogle Scholar
  10. 10.
    Dinehart, L.H.: Handwriting in early childhood education: current research and future implications. J. Early Child. Lit. 15(1), 97–118 (2015)CrossRefGoogle Scholar
  11. 11.
    Grissmer, D., Grimm, K., Aiyer, S.: Fine motor skills and early comprehension of the world: two new school readiness indicators. Dev. Psychol. 46(5), 1008–1017 (2010)CrossRefGoogle Scholar
  12. 12.
    Feder, K., Majnemer, A.: Handwriting development, competency, and intervention. Dev. Med. Child Neurol. 49(4), 312–317 (2007)CrossRefGoogle Scholar
  13. 13.
    Case-Smith, J.: Occupational Therapy for Children, 4th edn. Mosby, St. Louis (2001)Google Scholar
  14. 14.
    De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Dev. Neurorehabil. 14, 140–144 (2011)CrossRefGoogle Scholar
  15. 15.
    Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)CrossRefGoogle Scholar
  16. 16.
    Galil, A., Carmel, S., Lubetzky, H., Heiman, N.: Compliance with home rehabilitation therapy by parents of children with disabilities in Jews and Bedouin in Israel. Dev. Med. Child Neurol. 43(4), 261–268 (2001)CrossRefGoogle Scholar
  17. 17.
    Mitchell, L., Ziviani, J., Oftedal, S., Boyd, R.: The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54, 667–671 (2012)CrossRefGoogle Scholar
  18. 18.
    Levac, D.E., Galvin, J.: When is virtual reality “therapy”? Arch. Phys. Med. Rehabil. 94(795), 8 (2013)Google Scholar
  19. 19.
    Kanitkar, A., Szturm, T., Parmar, S., Gandhi, D.B., Rempel, G.R., Restall, G., Sharma, M., Narayan, A., Pandian, J., Naik, N., Savadatti, R.R., Kamate, M.A.: The effectiveness of a computer game-based rehabilitation platform for children with cerebral palsy: protocol for a randomized clinical trial. JMIR Res. Protoc. 6(5), e93 (2017)CrossRefGoogle Scholar
  20. 20.
    Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., et al.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, 1–8 (2010)CrossRefGoogle Scholar
  21. 21.
    Shin, J., Song, G., Hwangbo, G.: Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Therapy Sci. 27(7), 2151–2154 (2015)CrossRefGoogle Scholar
  22. 22.
    Butt, A.H., Rovini, E., Dolciotti, C., Bongioanni, P., De Petris, G., Cavallo, F.: Leap motion evaluation for assessment of upper limb motor skills in Parkinson’s disease. In: International Conference on Rehabilitation Robotics (ICORR), pp. 116–121. IEEE, July 2017Google Scholar
  23. 23.
    Garcia-Zapirain, B., de la Torre Díez, I., López-Coronado, M.: Dual system for enhancing cognitive abilities of children with ADHD using leap motion and eye-tracking technologies. J. Med. Syst. 41(7), 111 (2017)CrossRefGoogle Scholar
  24. 24.
    Losa, M., Morone, G., Fusco, A., Castagnoli, M., Fusco, F.R., Pratesi, L., Paolucci, S.: Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top. Stroke Rehabil. 22(4), 306–316 (2015)CrossRefGoogle Scholar
  25. 25.
    De Oliveira, J.M., Fernandes, R.C.G., Pinto, C.S., Pinheiro, P.R., Ribeiro, S., de Albuquerque, V.H.C.: Novel virtual environment for alternative treatment of children with cerebral palsy. Comput. Intell. Neurosc. (2016)Google Scholar
  26. 26.
    Gil-Gómez, J.A., Gil-Gómez, H., Lozano-Quilis, J.A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C.: SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. Application in a virtual rehabilitation system for balance rehabilitation. In: 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, pp. 335–338 (2013)Google Scholar
  27. 27.
    Fitzgerald, D., Kelly, D., Ward, T., Markham, C., Caulfield, B.: Usability evaluation of E-motion: a virtual rehabilitation system designed to demonstrate, instruct and monitor a therapeutic exercise programme. In: Virtual Rehabilitation, pp. 144–149 (2008)Google Scholar
  28. 28.
    Pruna, E., Acurio, A., Escobar, I., Pérez, S.A.: 3D virtual system using a haptic device for fine motor rehabilitation. In: Advances in Intelligent Systems and Computing, pp. 648–656 (2017)Google Scholar
  29. 29.
    Pruna, E., Acurio, A., Tigse, J., Escobar, I., Pilatásig, M.: Virtual system for upper limbs rehabilitation in children. In: AVR 2017, pp. 107–118 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ivón Escobar
    • 1
  • Andrés Acurio
    • 1
  • Edwin Pruna
    • 1
  • Luis Mena
    • 1
  • Marco Pilatásig
    • 1
  • José Bucheli
    • 1
  • Franklin Silva
    • 1
  • Ricardo Robalino
    • 2
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquiEcuador
  2. 2.Hospital General de LatacungaLatacungaEcuador

Personalised recommendations