Technologies Sustainability Modeling

  • Egils Ginters
  • Dace Aizstrauta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)


Nowadays practically every real system that reflects the objective reality, is of a sociotechnical nature. System is the result of collaboration of technical and social subsystems, as well as their symbiosis. The existence of a sociotechnical system is determined by the being of a digital society of technology and knowledge. Technology is one of the pillars of today’s society, so it’s important to predict which technologies will be accepted in society, which will be sustainable and in which of them it is worthwhile to invest. There are yet few validated methodologies that allow for predicting of the credible sustainability forecast of a new or existing technology. The article dealt with on system dynamics simulation based Integrated Acceptance and Sustainability Assessment Methodology (IASAM), which is one of the possible solutions that makes decision making easier for potential investors and policy planners.


IASAM Acceptance and sustainability assessment Sociotechnical systems System dynamics simulation 



The article publication is initiated by FP7 FLAG-ERA FuturICT 2.0 (2017-2020) “Large scale experiments and simulations for the second generation of FuturICT” STIMUL project “System Dynamics Simulation Use in Sociotechnical Systems Acceptance and Sustainability Assessment (IASAM)”.


  1. 1.
    Ginters, E., Aizstrauts, A., Aguilar-Chinea, R.-M.: Sociotechnical aspects of policy simulation. In: Sonntagbauer, P., Nazemi, K., Sonntagbauer, S., Prister, G., Burkhardt, D. (eds.) Handbook of Research on Advanced ICT Integration for Governance and Policy Modeling, pp. 113–128. IGI-Global (2014). ISBN13 9781466662360, ISBN10 1466662360, EISBN13 9781466662377Google Scholar
  2. 2.
    Ginters, E., Barkane, Z., Vincent, H.: System dynamics use for technology assessment. In: Proceedings of the 22th European Modeling and Simulation Symposium (EMSS), 13–15 October, Fes, Morocco (2010)Google Scholar
  3. 3.
    Ginters, E., Merkuryev, Y., Grabis, J., Straujums, U., Bicevskis, J.: Requirements model of sociotechnical systems simulator architecture. In: Rocha, A., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) Recent Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol. 569, pp. 797–807. Springer (2017). ISSN 2194-5357, ISBN 978-3-319-56534-7Google Scholar
  4. 4.
    Fishbein, M., Ajzen, I.: Predicting and Changing Behavior: The Reasoned Action Approach. Psychology Press, New York (2010)Google Scholar
  5. 5.
    Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)CrossRefGoogle Scholar
  6. 6.
    Bhattacherjee, A.: Understanding information systems continuance: and expectation-confirmation model. MIS Q. 25(3), 351–370 (2001)CrossRefGoogle Scholar
  7. 7.
    Venkatesh, V., Morris, M., Davis, G., Davis, F.: User acceptance of information technology: toward unified view. MIS Q. 27, 425–478 (2003)CrossRefGoogle Scholar
  8. 8.
    Chandak, S.P.: Making Right Choices: A Framework for Sustainability Assessment of Technology (SAT) (2010).
  9. 9.
    Aizstrauta, D., Ginters, E.: Introducing integrated acceptance and sustainability assessment of technologies: a model based on system dynamics simulation. In: Fernandez-Izquierdo, M.-A., Munoz-Torres, M.-J., Leon, R. (eds.) Proceedings of the International Conference on Modeling and Simulation in Engineering, Economics and Management (MS2013), Castellona de la Plana, Spain, June. LNBIP, vol. 145, pp. 23–30. Springer, Heidelberg (2013). ISSN 1865-1348, eISSN 1865-1356CrossRefGoogle Scholar
  10. 10.
    Magdaleno, A.M., Werner, C.M.L., de Araujo, R.M.: Reconciling software development models: a quasi-systematic review. J. Syst. Softw. 85, 351–369 (2012)CrossRefGoogle Scholar
  11. 11.
    Petter, S., DeLone, W., McLean, E.: Measuring information systems success: models, dimensions, measures, and interrelationships. Eur. J. Inf. Syst. 17, 236–263 (2008)CrossRefGoogle Scholar
  12. 12.
    Aizstrauta, D., Celmina, A., Ginters, E., Mazza, R.: Validation of integrated acceptance and sustainability assessment methodology. In: Bluemel, E., Ginters, E. (eds.) Procedia Computer Science. ICTE in Regional Development, vol. 26, pp. 33–40. Elsevier (2013). ISSN: 1877-0509CrossRefGoogle Scholar
  13. 13.
    Karakaya, E., Hidalgo, A., Nuur, C.: Diffusion of eco-innovations: a review. Renew. Sustain. Energy Rev. 33, 392 (2014)CrossRefGoogle Scholar
  14. 14.
    Ward, R.: The application of technology acceptance and diffusion of innovation models in healthcare informatics. Health Policy Technol. 2, 222–228 (2014)CrossRefGoogle Scholar
  15. 15.
    Rogers, E.M.: Diffusion of Innovations, 5th edn. Simon and Schuster, New York (2003). ISBN 978-0-7432-5823-4Google Scholar
  16. 16.
    Aizstrauta, D., Ginters, E., Piera Eroles, M.-A.: Applying theory of diffusion of innovations to evaluate technology acceptance and sustainability. In: Ginters, E., Schumann, M. (eds.) Procedia Computer Science. ICTE in Regional Development, vol. 43, pp. 69–78. Elsevier (2014). ISSN: 1877-0509CrossRefGoogle Scholar
  17. 17.
    Aizstrauts, A., Aizstrauta, D., Ginters, E.: Simulators sustainability assessment. In: Affenzeller, M., Bruzzone, G.-A., Jimenez, E., Longo, F., Merkuryev, Y., Zhang, L. (eds.) Proceedings of 27th Europen Modelling and Simulation Symposium (EMSS 2015), 21–23 September, Bergeggi, Italy, pp. 36–46 (2015). ISBN 978-88-97999-48-5Google Scholar
  18. 18.
    Aizstrauta, D., Ginters, E.: Integrated acceptance and sustainability assessment mod9 transformations into executable system dynamics model. In: Ginters, E., Schumann, M. (eds.) Procedia Computer Science. ICTE in Regional Development, vol. 77, pp. 92–97. Elsevier (2015). ISSN: 1877-0509CrossRefGoogle Scholar
  19. 19.
    Ginters, E., Aizstrauta, D.: Using market data of technologies to build a dynamic integrated acceptance and sustainability assessment model. Procedia Comput. Sci. 104, 501–508 (2017)CrossRefGoogle Scholar
  20. 20.
    Aizstrauta, D., Ginters, E.: Sociotechnical systems acceptance and sustainability assessment using dynamic simulation model. In: Affenzeller, M., Bruzzone, A.G., Jiménez, E., Longo, F., Piera, M.A. (eds.) Proceedings of the European Modeling and Simulation Symposium (EMSS 2017), pp. 519–527 (2017). ISBN 978-88-97999-85-0Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Modeling and SimulationRiga Technical UniversityRigaLatvia

Personalised recommendations