Exploring Factors Affecting Mobile Services Adoption by Young Consumers in Cameroon

  • Frank Wilson Ntsafack
  • Jean Robert Kala KamdjougEmail author
  • Samuel Fosso Wamba
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)


With the advancement of mobile devices and sophisticated mobile data transmission technologies nurtured by telecommunication providers of 4G services, m-commerce has become an important platform for easier consumer interactions. It’s in this light that researchers have been paying much attention to how businesses, can reach specific consumer segments such as teens and young adults. This research aims to investigate factors predicting the consumer’s intention to adopt m-commerce in Cameroon, but also the moderating effects of demographic variables on such prediction. Data were collected from 262 Cameroonian respondents aged less than 45, as the category of unconditional IT users in Cameroon. A quantitative approach based on the PLS-SEM algorithm was used. Results showed no significant moderating effect of age and gender for the hypothesis: Behavioural intention positively influences consumer intention to adopt m-commerce. Findings are expected to help companies dealing with m-commerce to better formulate marketing strategies to attract more users.


m-commerce Consumer intention Demographic variables UTAUT TAM Factors of adoption Cameroon 


  1. 1.
    Smartphone Users Worldwide Will Total 1.75 Billion in 2014: eMarketer. Accessed: 22 Nov 2017
  2. 2.
    CIA: The world Factbook – Africa: Cameroon (2016)Google Scholar
  3. 3.
    Internet lives stats: Cameroon Internet Users 10 Jan 2017Google Scholar
  4. 4.
    Zhou, T., Lu, Y., Wang, B.: Integrating TTF and UTAUT to explain mobile banking user adoption. Comput. Hum. Behav. 26(4), 760–767 (2010)CrossRefGoogle Scholar
  5. 5.
    Yang, K.C.: Exploring factors affecting the adoption of mobile commerce in Singapore. Telemat. Inform. 22(3), 257–277 (2005)CrossRefGoogle Scholar
  6. 6.
    Feng, H., Hoegler, T., Stucky, W.: Exploring the critical success factors for mobile commerce. In: International Conference on Mobile Business. ICMB 2006, p. 40 (2006)Google Scholar
  7. 7.
    Tarasewich, P., Nickerson, R.C., Warkentin, M.: Issues in mobile e-commerce. Commun. Assoc. Inf. Syst. 8(1), 3 (2002)Google Scholar
  8. 8.
    Tiwari, R., Buse, S.: The mobile commerce prospects: A strategic analysis of opportunities in the banking sector (2007)Google Scholar
  9. 9.
    Chong, A.Y.-L.: Mobile commerce usage activities: The roles of demographic and motivation variables. Technol. Forecast. Soc. Change 80(7), 1350–1359 (2013)CrossRefGoogle Scholar
  10. 10.
    Davis, F.D.: The original TAM Model (1986)Google Scholar
  11. 11.
    Rogers, E.M.: Diffusion of innovations (1995)Google Scholar
  12. 12.
    Fishbein, M., Ajzen, I.: Belief, Attitude, Intention, and Behavior: An introduction to theory and research, (1975)Google Scholar
  13. 13.
    Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50(2), 179–211 (1991)CrossRefGoogle Scholar
  14. 14.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view, MIS Q, pp. 425–478 (2003)CrossRefGoogle Scholar
  15. 15.
    Hofstede, G.: Culture and organizations. Int. Stud. Manag. Organ. 10(4), 15–41 (1980)CrossRefGoogle Scholar
  16. 16.
    Hoppe, M.H.: Culture and leader effectiveness: The GLOBE study, Cent. Eur. J. Commun. (2007)Google Scholar
  17. 17.
    Grabner-Kräute, S., Kaluscha, E.A.: Empirical research in on-line trust: a review and critical assessment. Int. J. Hum.-Comput. Stud. 58(6), 783–812 (2003)CrossRefGoogle Scholar
  18. 18.
    Grabner-Kräuter, S., Kaluscha, E.A.: Engendering consumer trust in e-commerce: Conceptual clarification and empirical findings, Trust Netw. Econ. 55–69 (2003)Google Scholar
  19. 19.
    Søndergaard, M., Hofstede, G.: Culture’s Consequences: Comparing Values, Behaviours, Institutions, and Organizations Across Nations. Int. J. Cross Cult. Manag., 243–246 (2001)Google Scholar
  20. 20.
    Veiga, J.F., Floyd, S., Dechant, K.: Towards modelling the effects of national culture on IT implementation and acceptance. J. Inf. Technol. 16(3), 145–158 (2001)CrossRefGoogle Scholar
  21. 21.
    Davis, F.D.: Perceived Usefulness, perceived Ease of use and User acceptance of Information technology (1989)CrossRefGoogle Scholar
  22. 22.
    Chong, A.Y.-L., Darmawan, N., Ooi, K.-B., Lin, B.: Adoption of 3G services among Malaysian consumers: an empirical analysis. Int. J. Mob. Commun. 8(2), 129–149 (2010)CrossRefGoogle Scholar
  23. 23.
    Chong, A.Y.-L., Ooi, K.-B.: Lin, B., Bao, H.: An empirical analysis of the determinants of 3G adoption in China. Comput. Hum. Behav. 28(2), 360–369 (2012)CrossRefGoogle Scholar
  24. 24.
    Lule, I., Omwansa, T.K., Waema, T.M.: Application of Technology Acceptance Model (TAM) in M-Banking Adoption in Kenya. Int. J. Comput. ICT Res. 6(1), 31–43 (2012)Google Scholar
  25. 25.
    Mortimer, G.: Determining the drivers of M-Banking adoption: a cross cultural study. Presented at the AM2015 Academy of Marketing Conference: The Magic in Marketing, Limerick, Ireland (2015)Google Scholar
  26. 26.
    El-Gohary, H.: Factors affecting E-Marketing adoption and implementation in tourism firms: An empirical investigation of Egyptian small tourism organisations. Tour. Manag. 33(5), 1256–1269 (2012)CrossRefGoogle Scholar
  27. 27.
    Lin, S.-P.: Determinants of adoption of mobile healthcare service. Int. J. Mob. Commun. 9(3), 298–315 (2011)CrossRefGoogle Scholar
  28. 28.
    Dai, H., Palvi, P.C.: Mobile commerce adoption in China and the United States: a cross-cultural study. ACM SIGMIS Database 40(4), 43–61 (2009)CrossRefGoogle Scholar
  29. 29.
    Sadi, A.H.M., Noordin, M.F.: Factors influencing the adoption of M-commerce: An Exploratory Analysis (2011)Google Scholar
  30. 30.
    Wu, J.-H., Wang, S.-C.: What drives mobile commerce?: an empirical evaluation of the revised technology acceptance model. Inf. Manage. 42(5), 719–729 (2005)CrossRefGoogle Scholar
  31. 31.
    Tsu, Wei T., Marthandan, G., Yee-Loong, Chong A., Ooi, K.-B., Arumugam, S.: What drives Malaysian m-commerce adoption? an empirical analysis. Ind. Manag. Data Syst. 109(3), 370–388 (2009)CrossRefGoogle Scholar
  32. 32.
    Jeyaraj, A., Rottman, J.W., Lacity, M.C.: A review of the predictors, linkages, and biases in IT innovation adoption research. J. Inf. Technol. 21(1), 1–23 (2006)CrossRefGoogle Scholar
  33. 33.
    Min, Q., Ji, S., Qu, G.: Mobile commerce user acceptance study in China: a revised UTAUT model. Tsinghua Sci. Technol. 13(3), 257–264 (2008)CrossRefGoogle Scholar
  34. 34.
    Chew, A.A.: The adoption of M-Commerce in the United States, Unpubl. Honors Thesis California State University. Long Beach CA (2006)Google Scholar
  35. 35.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13(3), 319–340 (1989)CrossRefGoogle Scholar
  36. 36.
    Carlsson, C., Carlsson J., Hyvonen, K., Puhakainen, J., Walden, P.: Adoption of mobile devices/services—searching for answers with the UTAUT. In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences, 2006. HICSS 2006, vol. 6, p. 132a (2006)Google Scholar
  37. 37.
    Chong, A.Y.-L., Chan, F.T., Ooi, K.-B.: Predicting consumer decisions to adopt mobile commerce: cross country empirical examination between China and Malaysia. Decis. Support Syst. 53(1), 34–43 (2012)CrossRefGoogle Scholar
  38. 38.
    Hair Jr., J.F., Hult, G.T.M., Ringle, C., Sarstedt, M.: A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, Thousand Oaks (2016)zbMATHGoogle Scholar
  39. 39.
    Chin, W.W.: The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 295(2), 295–336 (1998)Google Scholar
  40. 40.
    Fornell, C., Cha, J.: Partial least squares. Adv. Methods Mark. Res. 407(3), 52–78 (1994)Google Scholar
  41. 41.
    Sarstedt, M., Henseler, J., Ringle, C.M.: Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. Measurement and research methods in international marketing, pp. 195–218. Emerald Group Publishing Limited, Bingley (2011)Google Scholar
  42. 42.
    Henseler, J., Ringle, C.M., Sinkovics, R.R.: The use of partial least squares path modeling in international marketing. In: New challenges to international marketing, pp. 277–319. Emerald Group Publishing Limited, Bingley (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Frank Wilson Ntsafack
    • 1
  • Jean Robert Kala Kamdjoug
    • 1
    Email author
  • Samuel Fosso Wamba
    • 2
  1. 1.Université Catholique d’Afrique Centrale, FSSG, GRIAGESYaoundeCameroun
  2. 2.Toulouse Business School, FranceUniversité Fédérale de Toulouse Midi-PyrénéesToulouseFrance

Personalised recommendations