Fast Diagnostics of Conformal Arrays

  • Giuseppe Di Massa
  • Sandra Costanzo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)


Near-field data are used as diagnostics tool to reconstruct the aperture field distribution of conformal array antennas and identify any defective element. The problem of inversion and regularization of the resulting matrix is addressed. A sampling method is proposed and successfully compared, in terms of computation time, with other existing approaches.


Conical array Conformal array Matrix method 


  1. 1.
    Costanzo, S., Di Massa, G.: An integrated probe for phaseless near-field measurements. Measurement 31, 123–129 (2002)CrossRefGoogle Scholar
  2. 2.
    Lee, J.J., Ferren, E.M., Woollen, D.P., Lee, K.M.: Near-field probe used as a diagnostic tool to locate defective elements in an array antenna. IEEE Trans. Antennas Propag. 36–6, 884–889 (1988)CrossRefGoogle Scholar
  3. 3.
    Gattoufi L., Picard D., Rekiouak A., Bolomey J.C., Matrix method for near field diagnostic techniques of phase array. In: Proceedings of IEEE International Symposium on Phased Array System and Technology, pp. 52–57 (1996)Google Scholar
  4. 4.
    Hansen, P.C.: The truncated SVD as method for regularization. BIT Numer. Math. 27(4), 534–553 (1987)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Peiliang, X.: Truncated SVD method for discrete linear ill-posed problems. Geophys. J. Int. 135, 505–514 (1998)CrossRefGoogle Scholar
  6. 6.
    Frieze, A., Kannan, R., Vempala, S.: Fast Monte-Carlo algorithms for finding low-rank approximation. J. ACM (JACM) 51(6), 1025–1041 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Drineas, P., Drinea, D.E., Huggins, P.S.: An Experimental evaluation of Monte-Carlo algorithm for singular value decomposition. LNCS, vol. 2563, pp. 279–296 (2003)Google Scholar
  8. 8.
    CVX Research Inc.: CVX: Matlab Software for Disciplined Convex Programming, version 2.0 (2012).,
  9. 9.
    Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control (a tribute to M. Vidyasagar). Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, London (2008)Google Scholar
  10. 10.
    Saad, Y., van der Vorst, H.A.: Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123(1), 1–33 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615 (1951)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bucci, O.M., Migliore, M.D., Panariello, G., Sgambato, P.: Accurate diagnosis of conformal arrays from near-field data using the matrix method. IEEE Trans. Antennas Propag. 53(3), 1114–1120 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DIMESUniversity of CalabriaRendeItaly

Personalised recommendations