Comparative Analysis Between Different Facial Authentication Tools for Assessing Their Integration in m-Health Mobile Applications

  • Francisco D. Guillén-Gámez
  • Iván García-Magariño
  • Guillermo Palacios-Navarro
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)


The security and privacy in the access to mobile health applications are a challenge that any company or health organization has to take into consideration to develop reliable and robust applications. In this line, the facial authentication becomes a key piece to improve the access to users and that they do not lose their privacy of their data due to cyber-attacks or fraudulent users. The purpose of the current framework is to compare the two relevant facial-based mechanisms to select the most appropriate one for the authentication security in our under-development Framework for developing M-health APps (FAMAP).


Security Facial authentication Face images m-Health 



We acknowledge the research project “Construcción de un framework para agilizar el desarrollo de aplicaciones móviles en el ámbito de la salud’’ funded by University of Zaragoza and Foundation Ibercaja with grant reference JIUZ-2017-TEC-03.


  1. 1.
    Montecchi, L., Lollini, P., Bondavalli, A., La Mattina, E.: Quantitative security evaluation of a multi-biometric authentication system. In: International Conference on Computer Safety, Reliability, and Security, pp. 209–221. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Jain, A., Hong, L., Pankanti, S.: Biometric identification. Commun. ACM 43(2), 90–98 (2000)CrossRefGoogle Scholar
  3. 3.
    Prabhakar, S., Pankanti, S., Jain, A.K.: Biometric recognition: security and privacy concerns. IEEE Secur. Priv. 99(2), 33–42 (2003)CrossRefGoogle Scholar
  4. 4.
    Guillén-Gámez, F.D., García-Magariño, I., Bravo-Agapito, J., Lacuesta, R., Lloret, J.: A proposal to improve the authentication process in m-health environments. IEEE Access 5, 22530–22544 (2017)CrossRefGoogle Scholar
  5. 5.
    Shah, K., Shah, S., Shah, T., Shinde, R., Gharat, S.: Secure examination system using biometric and QR code technology. Int. J. Eng. Sci. 7(4), 10365 (2017)Google Scholar
  6. 6.
    Feng, W., Zhou, J., Dan, C., Peiyan, Z., Li, Z.: Research on mobile commerce payment management based on the face biometric authentication. Int. J. Mob. Commun. 15(3), 278–305 (2017)CrossRefGoogle Scholar
  7. 7.
    Zuniga, A.E.F., Win, K.T., Susilo, W.: Biometrics for electronic health records. J. Med. Syst. 34(5), 975–983 (2010)CrossRefGoogle Scholar
  8. 8.
    Labayen, M., Vea, R., Flórez, J., Guillén-Gámez, F.D., García-Magariño, I.: Smowl: a tool for continuous student validation based on face recognition for online learning. In: Edulearn14 Proceedings, pp. 5354–5359. IATED (2014)Google Scholar
  9. 9.
    Smowl: Website of Smowl Tech. Accessed 17 Nov 2017
  10. 10.
    OpenFace: Website of OpenFace Free and open source face recognition with deep neural networks. Accessed 17 Nov 2017
  11. 11.
    Amos, B., Ludwiczuk, B., Satyanarayanan, M.: OpenFace: a general-purpose face recognition library with mobile applications. Technical report, CMU-CS-16–118, CMU School of Computer Science (2016)Google Scholar
  12. 12.
    Baltrušaitis, T., Robinson, P., Morency, L.P.: Openface: an open source facial behavior analysis toolkit. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10. IEEE (2016)Google Scholar
  13. 13.
    Staubitz, T., Teusner, R., Renz, J., Meinel, C.: An Experiment in Automated Proctoring. Research Track, p. 41 (2016)Google Scholar
  14. 14.
    García-Magariño, I., Fuentes-Fernández, R., Gómez-Sanz, J.J.: A framework for the definition of metamodels for Computer-Aided Software Engineering tools. Inf. Softw. Technol. 52(4), 422–435 (2010)CrossRefGoogle Scholar
  15. 15.
    García-Magariño, I., Rougemaille, S., Fuentes-Fernández, R., Migeon, F., Gleizes, M.P., Gómez-Sanz, J.: A tool for generating model transformations by-example in multi-agent systems. In: 7th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009), Advances in Intelligent and Soft Computing, vol. 55, pp. 70–79. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    García-Magariño, I., Gómez-Sanz, J.J., Pérez-Agüera, J.R.: A multi-agent based implementation of a Delphi process. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1543–1546. International Foundation for Autonomous Agents and Multiagent Systems, May 2008Google Scholar
  17. 17.
    Gutierrez, C., Garcia-Magariño, I.: A metrics suite for the communication of multi-agent systems. J. Phys. Agents 3(2), 7–14 (2009)Google Scholar
  18. 18.
    García-Magariño, I., Cossentino, M., Seidita, V.: A metrics suite for evaluating agent-oriented architectures. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 912–919. ACM, March 2010Google Scholar
  19. 19.
    García-Magariño, I., Palacios-Navarro, G., Lacuesta, R.: TABSAOND: a technique for developing agent-based simulation apps and online tools with nondeterministic decisions. Simul. Model. Pract. Theory 77, 84–107 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Research and Diagnostic Methods, Faculty of EducationPontificia University of SalamancaSalamancaSpain
  2. 2.Department of Computer Science and Engineering of SystemsUniversity of ZaragozaTeruelSpain
  3. 3.Instituto de Investigación Sanitaria AragónUniversity of ZaragozaZaragozaSpain
  4. 4.Department of Electronic Engineering and CommunicationsUniversity of ZaragozaTeruelSpain

Personalised recommendations