Advertisement

On Green Scheduling for Desktop Grids

  • Thanasis Loukopoulos
  • Maria G. Koziri
  • Kostas Kolomvatsos
  • Panagiotis Oikonomou
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 747)

Abstract

Task scheduling is of paramount importance in a desktop grid environment. Earlier works in the area focused on issues such as: meeting task deadlines, minimizing make-span, monitoring and checkpointing for progress, malicious or erroneous peer discovery and fault tolerance using task replication. More recently energy consumption has been studied from the standpoint of judiciously replicating and assigning tasks to the more power efficient peers. In this paper we tackle another aspect of power efficiency with regards to scheduling, namely greenness of the consumed energy. We give a formulation as a multi-objective optimization problem and propose heuristics to solve it. All the heuristics are evaluated via simulation experiments and conclusions on their merits are drawn.

Keywords

Scheduling Green computing Desktop grids  Volunteer computing 

Notes

Acknowledgments

This work was supported by the “ENFORCE” project which is part of the SoftFIRE grant agreement no 687860, European Commission (Horizon 2020).

References

  1. 1.
  2. 2.
    The SETI@home project. http://setiathome.ssl.berkeley.edu/
  3. 3.
    Koziri, M.G., Papadopoulos, P.K., Tziritas, N., Dadliaris, A.N., Loukopoulos, T., Stamoulis, G.I.: On planning the adoption of new video standards in social media networks: a general framework and its application to HEVC. Soc. Netw. Anal. Min. 7(1), 1–32 (2017)CrossRefGoogle Scholar
  4. 4.
    Dadaliaris, A.N., Oikonomou, P., Koziri, M.G., Nerantzaki, E., Hatzaras, Y., Garyfallou, D., Loukopoulos, T., Stamoulis, G.I.: Heuristics to augment the performance of tetris legalization: making a fast but inferior method competitive. J. Low Power Electron. 13(2), 220–230 (2017)CrossRefGoogle Scholar
  5. 5.
    Ahmad, R.W., Gani, A., Hamid, S.H.A., Shiraz, M., Yousafzai, A., Xia, F.: A survey on virtual machine migration and server consolidation frameworks for cloud data centers. J. Netw. Comput. Appl. 15, 11–25 (2015)CrossRefGoogle Scholar
  6. 6.
    Oram, A.: Peer-To-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly & Associates, Sebastopol (2001)Google Scholar
  7. 7.
    Develder, C., Pickavet, M., Dhoedt, B., Demeester, P.: A power-saving strategy for grids. In: 2nd International Conference on Networks for Grid Applications, pp. 1–8 (2008)Google Scholar
  8. 8.
    Da Costa, G., Gelas, J.-P., Georgiou, Y., Lefevre, L., Orgerie, A.-C., Pierson, J.-M., Richard, O., Sharma, K.: The GREEN-NET framework: energy efficiency in large scale distributed systems. In: 23rd IEEE International Parallel & Distributed Processing Symposium, Rome, pp. 1–8 (2009)Google Scholar
  9. 9.
    Orgerie, A., Lefevre, L.: ERIDIS: energy-efficient reservation infrastructure for large-scale distributed systems. Parallel Process. Lett. 21(2), 133–154 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Qureshi, M.B., Dehnavi, M.M., Min-Allah, N., Qureshi, M.S., Hussain, H., Rentifis, I., Tziritas, N., Loukopoulos, T., Khan, S.U., Xu, C.-Z., Zomaya, A.Y.: Survey on grid resource allocation mechanisms. J. Grid Comput. 12(2), 399–441 (2014)CrossRefGoogle Scholar
  11. 11.
    Schott, B., Emmen, A.: Green desktop-grids: scientific impact, carbon footprint, power usage efficiency. Int. J. Scal. Comput. Pract. Exp. 12(2), 257–264 (2011)Google Scholar
  12. 12.
    Castro, H., Villamizar, M., Sotelo, G., Diaz, C.O., Pecero, J.E., Bouvry, P.: Green flexible opportunistic computing with task consolidation and virtualization. Cluster Comput. 16(3), 545–557 (2013)CrossRefGoogle Scholar
  13. 13.
    Ponciano, L., Brasileiro, F.: On the impact of energy-saving strategies in opportunistic grids. In: 11th ACM/IEEE International Conference on Grid Computing, pp. 282–289 (2010)Google Scholar
  14. 14.
    Ponciano, L., Brasileiro, F.: Assessing green strategies in peer-to-peer opportunistic grids. J. Grid Comput. 11(1), 129–148 (2013)CrossRefGoogle Scholar
  15. 15.
    Khan, S., Ahmad, I.: A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Trans. Parallel Distrib. Syst. 20(3), 346–360 (2009)CrossRefGoogle Scholar
  16. 16.
    Kolodziej, J., Khan, S.U., Wang, L., Zomaya, A.: Energy efficient genetic-based schedulers in computational grids. Concurr. Comput. Pract. Exp. 27(4), 809–829 (2015)CrossRefGoogle Scholar
  17. 17.
    Linberg, P., Leingang, J., Lysaker, D., Khan, S., Li, J.: Comparison and analysis of eight scheduling heuristics for the optimization of energy consumption and makespan in large-scale distributed systems. J. Supercomput. 59(1), 323–360 (2012)CrossRefGoogle Scholar
  18. 18.
    Loukopoulos, T., Lampsas, P., Sigalas, P.: Improved genetic algorithms and list scheduling techniques for independent task scheduling in distributed systems. In: 8th International Conference on Parallel and Distributed Computing, Applications and Technologies, Adelaide, Australia, pp. 67–74 (2007)Google Scholar
  19. 19.
    Tziritas, N., Loukopoulos, T., Khan, S.U., Xu, C.-Z.: Distributed algorithms for the operator placement problem. IEEE Trans. Comput. Social Systems (TCSS) 2(4), 182–196 (2015)CrossRefGoogle Scholar
  20. 20.
    Tchernykh, A., Pecero, J.E., Barrondo, A., Schaeffer, E.: Adaptive energy efficient scheduling in peer-to-peer desktop grids. Future Gener. Comput. Syst. 36, 209–220 (2014)CrossRefGoogle Scholar
  21. 21.
    Sarmenta, L.: Sabotage-tolerance mechanisms for volunteer computing systems. Future Gener. Comput. Syst. 18, 561–572 (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    Taufer, M., Anderson, D., Cicotti, P., Brooks, C.L.: Homogeneous redundancy: a technique to ensure integrity of molecular simulation results using public computing. In: 19th IEEE International Parallel & Distributed Processing Symposium (2005)Google Scholar
  23. 23.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thanasis Loukopoulos
    • 1
  • Maria G. Koziri
    • 2
  • Kostas Kolomvatsos
    • 2
  • Panagiotis Oikonomou
    • 2
  1. 1.Computer Science and Biomedical Informatics DepartmentUniversity of ThessalyLamiaGreece
  2. 2.Computer Science DepartmentUniversity of ThessalyLamiaGreece

Personalised recommendations