Advertisement

Automatic Assist in Estimating the Production Capacity of Final Machining for Cast Iron Machine Parts

  • Robert Sika
  • Michał Rogalewicz
  • Justyna Trojanowska
  • Łukasz Gmyrek
  • Przemysław Rauchut
  • Tomasz Kasprzyk
  • Maria L. R. Varela
  • Jose Machado
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 747)

Abstract

The paper presents a new approach for production capacities balancing. It is dedicated to companies performing machining services on a variety of materials on a small scale. The method is to help balance the production capacity on the basis of a defined labor intensity structure taking into account the share of set-up times and the level of defectiveness. The designed numerical algorithms along with the user interface make it possible to characterize machine tools and orders in the production system and compare the production capabilities of the system with the demand. The paper presents the algorithm working pattern, mathematical formulae used and a sample source code. An example of a computer application allowing to estimate the production capacity for sample orders (cast iron castings) and process routes in a selected cast iron production plant are also presented.

Keywords

Data acquisition Balancing production Production capacity Single unit production Cast iron casting 

Notes

Acknowledgments

The research work had the financial support of Ministry of Science and Higher Education, Republic of Poland, under the project 02/23/DSPB/7695.

References

  1. 1.
    Selech, J., Joachimiak-Lechman, K., Klos, Z., et al.: Life cycle thinking in small and medium enterprises: the results of research on the implementation of life cycle tools in polish SMEs – Part 3: LCC-related aspects. Int. J. Life Cycle Assess. 19, 1119–1128 (2014).  https://doi.org/10.1007/s11367-013-0695-9 CrossRefGoogle Scholar
  2. 2.
    Trojanowska, J., Kolinski, A., Galusik, D., Varela, M.L.R., Machado, J.: A methodology of improvement of manufacturing productivity through increasing operational efficiency of the production process. In: Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M. (eds.) Advances in Manufacturing. Lecture Notes in Mechanical Engineering, pp. 23–32. Springer, Cham (2018)CrossRefGoogle Scholar
  3. 3.
    Ignaszak, Z., Sika, R., Perzyk, P., Kochański, A., Kozłowski, J.: Effectiveness of SCADA systems in control of green sands properties. Arch. Foundry Eng. 16(1), 5–12 (2016).  https://doi.org/10.1515/afe-2015-0094 CrossRefGoogle Scholar
  4. 4.
    Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  5. 5.
    Andresen, M., Bräsel, H., Engelhardt, F., Werner, F.: LiSA-a Library of Scheduling Algorithms: Handbook for Version 3.0. Univ. Fak. für Mathematik (2010)Google Scholar
  6. 6.
    Baker, K.R.: Introduction to Sequencing and Scheduling, vol. 15. Wiley, New York (1974)Google Scholar
  7. 7.
    Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-Wesley Publishing Company, Inc., England (1967)zbMATHGoogle Scholar
  8. 8.
    Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 256–271 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brucker, P.: Scheduling Algorithms. Springer-Verlag, Heidelberg (1995)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hadidi, L.A., Al-Turki, U.M., Rahim, A.: Integrated models in production planning and scheduling, maintenance and quality: a review. Int. J. Industr. Syst. Eng. 10(1), 21–50 (2012)CrossRefGoogle Scholar
  11. 11.
    Hamrol, A.: Strategies and practices of efficient operation. Lean six sigma and other [in Polish]. PWN, Warszawa (2015)Google Scholar
  12. 12.
    Starzyńska, B., Szajkowska, K., Diering, M., Rocha, A., Reis, LP.: A study of raters agreement in quality inspection with the participation of hearing disabled employees. In: Advances in Manufacturing, pp. 881–888. Springer (2018)Google Scholar
  13. 13.
    Jasarevic, S., Brdarevic, S., Imamovic, M., Diering, M.: Standpoint of the top management about the effects of introduced quality system and continuation of activities of its improvement. Int. J. Qual. Res. 9(2), 209–230 (2015)Google Scholar
  14. 14.
    Kłos, S., Patalas-Maliszewska, J.: Throughput Analysis of Automatic Production Lines Based on Simulation Methods. In: Jackowski, K., Burduk, R., Walkowiak, K., Woźniak, M., Yin, H. (eds.) IDEAL 2015. Lecture Notes in Computer Science, vol. 9375, pp. 181–190. Springer, Cham (2015)CrossRefGoogle Scholar
  15. 15.
    Kunz, G., Machado, J., Perondi, E.: Using timed automata for modeling, simulating and verifying networked systems controller’s specifications. Neural Comput. Appl. 28, 1–11 (2015)Google Scholar
  16. 16.
    Sika, R., Hajkowski, J.: Synergy of modeling processes in the area of soft and hard modeling. In: Proceedings of 8th International Conference on Manufacturing Science and Education (MSE 2017), Trends in new industrial revolution, Sibiu (2017).  https://doi.org/10.1051/matecconf/201712104009
  17. 17.
    Sika, R., Rogalewicz, M.: Demerit control chart as a decision support tool in quality control of ductile cast-iron casting process. In: Proceedings of 8th International Conference on Manufacturing Science and Education (MSE 2017), Trends in new industrial revolution, Sibiu (2017).  https://doi.org/10.1051/matecconf/2011721104009
  18. 18.
    Krolczyk, J.B., Krolczyk, G.M., Legutko, S., Napiorkowski, J., Hloch, S., Foltys, J., Tama, E.: Material flow optimization – a case study in automotive industry. Tehnički vjesnik 22(6), 1447–1456 (2015)Google Scholar
  19. 19.
    Żywicki, K., Rewers, P., Sobkow, L., Antas, D.: The impact of task balancing and sequencing on production efficiency. In: Hamrol, A., Ciszak, O., Legutko, S., Jurczyk, M. (eds.) Advances in Manufacturing, pp. 67–77. Springer, Cham (2018)Google Scholar
  20. 20.
    Kłos, S., Trebuňa, P.: The impact of the availability of resources, the allocation of buffers and number of workers on the effectiveness of an assembly manufacturing system. Manag. Produc. Eng. Rev. 8(3), 40–49 (2017)Google Scholar
  21. 21.
    Żywicki, K., Zawadzki, P., Hamrol, A.: Preparation and production control in smart factory model. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) Recent Advances in Information Systems and Technologies, vol. 571, pp. 519–527. Springer, Cham (2017)CrossRefGoogle Scholar
  22. 22.
    Starzyńska, B., Grabowska, M., Hamrol, A.: Effective management of practitioners’ knowledge – development of a system for quality tool selection. In: 3rd International Conference on Social Science, Shanghai, China, pp. 859–865 (2014)Google Scholar
  23. 23.
    Golinska, P., Kuebler, F.: The method for assessment of the sustainability maturity in remanufacturing companies. Procedia CIRP 15, 201–206 (2014)CrossRefGoogle Scholar
  24. 24.
    Kalinowski, K., Zemczak, M.: Preparatory stages of the production scheduling of complex and multivariant products structures. Adv. Intell. Syst. Comput. 368, 475–483 (2015)Google Scholar
  25. 25.
    Kalinowski, K., Skolud, B.: The concept of ant colony algorithm for scheduling of flexible manufacturing systems. In: Advances in Intelligent Systems and Computing, vol. 527, pp. 408–415 (2017)Google Scholar
  26. 26.
    Adamczak, M., Domanski, R., Hadas, L., Cyplik, P.: The integration between production-logistics system and its task environment-chosen aspects. IFAC-PapersOnLine 49(12), 656–661 (2016)CrossRefGoogle Scholar
  27. 27.
    Hamrol, A., Kowalik, D., Kujawinska, A.: Impact of selected work condition factors on quality of manual assembly process. Hum. Factors Ergon. Manufac. Serv. Industr. 21(2), 156–163 (2011)CrossRefGoogle Scholar
  28. 28.
    Jacyna, M., Semenov, I.N., Trojanowski, P.: The research directions of increase effectiveness of the functioning of the RSA with regard to specialized transport. Archiv. Transp. 35(3), 27–39 (2015)CrossRefGoogle Scholar
  29. 29.
    Rewers, P., Hamrol, A., Żywicki, K., Bożek, M., Kulus, W.: Production leveling as an effective method for production flow control – experience of polish enterprises. Procedia Eng. 182, 619–626 (2017)CrossRefGoogle Scholar
  30. 30.
    Senger, Z.: Production Flow Control. PUT Publishers, Poznan (1998)Google Scholar
  31. 31.
    Pająk, E.: Production Management. PUT Publishers, Warsaw (2006)Google Scholar
  32. 32.
    Rogalewicz, M., Sika, R.: ProdBalance – A tool for balancing the production capacity of a production system, vol. 7, pp. 95–108. PUT Publishers, Warsaw (2007)Google Scholar
  33. 33.
    Wojciechowski, S., Maruda, R.W., Krolczyk, G.M., Nieslony, P.: Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precis. Eng. 51, 582–596 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Robert Sika
    • 1
  • Michał Rogalewicz
    • 2
  • Justyna Trojanowska
    • 2
  • Łukasz Gmyrek
    • 3
  • Przemysław Rauchut
    • 3
  • Tomasz Kasprzyk
    • 3
  • Maria L. R. Varela
    • 4
  • Jose Machado
    • 5
  1. 1.Institute of Materials TechnologyPoznan University of TechnologyPoznanPoland
  2. 2.Chair of Management and Production EngineeringPoznan University of TechnologyPoznanPoland
  3. 3.Teriel Foundry, LLC CompanyGostynPoland
  4. 4.Department of Production and Systems, School of EngineeringUniversity of MinhoGuimarãesPortugal
  5. 5.Department of Mechanical Engineering, School of EngineeringUniversity of MinhoGuimarãesPortugal

Personalised recommendations