Skip to main content

Abstract

The main result of this chapter is a variant of Ruelle’s theorem on the dynamical determinants of transfer operators associated with differentiable expanding dynamics and weights. The proof uses the Milnor-Thurston kneading operator approach. The contents of this chapter are a blueprint for the technically more involved situation of hyperbolic dynamics and the corresponding anisotropic Banach spaces in Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A power of a formal power series is a formal power series, the exponential of a formal power series thus gives a formal power series, using the Taylor series at zero of the exponential function.

  2. 2.

    The case \(d=1\) was considered in the introduction.

  3. 3.

    In particular, the domain of analyticity obtained in Theorem 3.3 is not optimal for general nonlinear expanding dynamics.

  4. 4.

    If \(C>1\), different arguments will be used in Section 3.3 if \(\alpha>d+t\) and in Section 3.3.4 in the more difficult case of low differentiability \(\alpha\le d+t\).

  5. 5.

    If \(L>1\), different arguments will be used in Sections 3.3 and 3.3.4.

  6. 6.

    See the remark after Proposition 3.13.

  7. 7.

    A rate of convergence is given by \(\| \mathbf{I}_{\epsilon}(\varphi)-\varphi\|_{H^{t}_{p}(M)} \le C \epsilon^{t-t'} \|\varphi\|_{H^{t'}_{p}(M)} \) for all \(0\le t'< t\), see e.g. [25, Lemma 5.4].

  8. 8.

    The decomposition is independent of \(t\) and \(p\).

  9. 9.

    At the end of this section, we give an alternative proof, using regularised determinants, in which the kneading operator is explicited.

  10. 10.

    Problem 2.46 would allow us to simplify the argument somewhat. Note also that a finite matrix of operators, indexed by \(\omega\), as in [100] can further streamline the proof without requiring a countable matrix as in [31]. These remarks also apply, for instance, to the proof of Proposition 3.18, and to hyperbolic settings.

  11. 11.

    As in the proof of Proposition 3.18, we can safely ignore the operators \(A_{t}\) there.

  12. 12.

    If \(\omega_{j}\ne \omega'(\overrightarrow{\omega}_{j})\), we may proceed as in the proof of Proposition 3.18, see (3.61).

  13. 13.

    As this book was going to press, M. Jézéquel [101] announced a series of new examples of non-polar singularities.

References

  1. Artuso, R., Aurell, E., Cvitanović, P.: Recycling of strange sets. I. Cycle expansions. Nonlinearity 3, 325–359 (1990)

    Article  MathSciNet  Google Scholar 

  2. Artuso, R., Aurell, E., Cvitanović, P.: Recycling of strange sets. II. Applications. Nonlinearity 3, 361–386 (1990)

    Article  MathSciNet  Google Scholar 

  3. Atiyah, M.F., Bott, R.: Notes on the Lefschetz fixed point formula for elliptic complexes. Harvard University. Reprinted in Bott’s Collected Papers, Vol. 2 (1964)

    Google Scholar 

  4. Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes. I. Ann. of Math. 86, 374–407 (1967)

    Article  MathSciNet  Google Scholar 

  5. Baillif, M.: Kneading operators, sharp determinants, and weighted Lefschetz zeta functions in higher dimensions. Duke Math. J. 124, 145–175 (2004)

    Article  MathSciNet  Google Scholar 

  6. Baillif, M., Baladi, V.: Kneading determinants and spectra of transfer operators in higher dimensions: the isotropic case. Ergodic Theory Dynam. Systems 25, 1437–1470 (2005)

    Article  MathSciNet  Google Scholar 

  7. Baladi, V.: Optimality of Ruelle’s bound for the domain of meromorphy of generalized zeta functions. Portugaliae Mathematica 49, 69–83 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Baladi, V.: Periodic orbits and dynamical spectra. Ergodic Theory Dynam. Systems 18, 255–292 (1998)

    Article  MathSciNet  Google Scholar 

  9. Baladi, V., Gouëzel, S.: Good Banach spaces for piecewise hyperbolic maps via interpolation. Annales de l’Institut Henri Poincaré/Analyse non linéaire 26, 1453–1481 (2009)

    Article  MathSciNet  Google Scholar 

  10. Baladi, V., Gouëzel, S.: Banach spaces for piecewise cone hyperbolic maps. J. Modern Dynam. 4, 91–135 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Baladi, V., Keller, G.: Zeta functions and transfer operators for piecewise monotone transformations. Comm. Math. Phys. 127, 459–477 (1990)

    Article  MathSciNet  Google Scholar 

  12. Baladi, V., Kitaev, A., Ruelle, D., Semmes, S.: Sharp determinants and kneading operators for holomorphic maps. Tr. Mat. Inst. Steklova 216, Din. Sist. i Smezhnye Vopr., 193–235 (1997); translation in Proc. Steklov Inst. Math. 216, 186–228 (1997)

    Google Scholar 

  13. Baladi, V., Liverani, C.: Exponential decay of correlations for piecewise contact hyperbolic flows. Comm. Math. Phys. 314, 689–773 (2012)

    Article  MathSciNet  Google Scholar 

  14. Baladi, V., Ruelle, D., Sharp determinants. Invent. Math. 123, 553–574 (1996)

    Article  MathSciNet  Google Scholar 

  15. Baladi, V., Tsujii, M.: Dynamical determinants for hyperbolic diffeomorphisms via dyadic decomposition, unpublished manuscript (2005)

    Google Scholar 

  16. Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008)

    Chapter  Google Scholar 

  17. Butterley, O., Liverani, C.: Smooth Anosov flows: correlation spectra and stability. J. Mod. Dyn. 1, 301–322 (2007)

    Article  MathSciNet  Google Scholar 

  18. Butterley, O.: A Note on Operator Semigroups Associated to Chaotic Flows. Ergodic Theory Dynam. Systems 36, 1396–1408 (2016) (Corrigendum: 36, 1409–1410 (2016))

    Article  MathSciNet  Google Scholar 

  19. Butterley, O., Eslami, P.: Exponential Mixing for Skew Products with Discontinuities. Trans. Amer. Math. Soc. 369, 783–803 (2017)

    Article  MathSciNet  Google Scholar 

  20. Buzzi, J, Keller, G.: Zeta functions and transfer operators for multidimensional piecewise affine and expanding maps. Ergodic Theory Dynam. Systems 21, 689–716 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Cvitanović, P., Artuso, R., Mainieri, R., Tanner G., Vattay, G.: Chaos: Classical and Quantum. Niels Bohr Institute, http://www.chaosbook.org

  22. Eslami, P.: Stretched-exponential mixing for \(C^{1+\alpha}\) skew products with discontinuities. Ergodic Theory Dynam. Systems 369, 783–803 (2017)

    Google Scholar 

  23. Faure, F., Sjöstrand, J.: Upper bound on the density of Ruelle resonances for Anosov flows. Comm. Math. Phys. 308, 325–364 (2011)

    Article  MathSciNet  Google Scholar 

  24. Fried, D.: The zeta functions of Ruelle and Selberg I. Ann. Sci. École Norm. Sup. (4) 19, 491–517 (1986)

    Article  MathSciNet  Google Scholar 

  25. Fried, D.: Meromorphic zeta functions for analytic flows. Comm. Math. Phys. 174, 161–190 (1995)

    Article  MathSciNet  Google Scholar 

  26. Fried, D.: The flat-trace asymptotics of a uniform system of contractions. Ergodic Theory Dynam. Systems 15, 1061–1073 (1995)

    Article  MathSciNet  Google Scholar 

  27. Friedman, J.S.: The Selberg trace formula and Selberg zeta-function for cofinite Kleinian groups with finite-dimensional unitary representations. Math. Z. 250, 939–965 (2005)

    Article  MathSciNet  Google Scholar 

  28. Gallavotti, G.: Funzioni zeta ed insiemi basilari. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 61, 309–317 (1977)

    MathSciNet  MATH  Google Scholar 

  29. Gohberg, I., Goldberg, S., Krupnik, N.: Traces and Determinants of Linear Operators. Birkhäuser, Basel (2000)

    Book  Google Scholar 

  30. Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006)

    Article  MathSciNet  Google Scholar 

  31. Gouëzel, S., Liverani, C.: Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. J. Differential Geom., 79, 433–477 (2008)

    Article  MathSciNet  Google Scholar 

  32. Gundlach, V. M., Latushkin, Y.: A sharp formula for the essential spectral radius of the Ruelle transfer operator on smooth and Hölder spaces. Ergodic Theory Dynam. Systems 23, 175–191 (2003)

    Article  MathSciNet  Google Scholar 

  33. Hörmander, L.: The analysis of linear partial differential operators. III. Pseudo-differential operators. Grundlehren der Mathematischen Wissenschaften 274, Springer-Verlag, Berlin (Corrected reprint of the 1985 original, 1994)

    MATH  Google Scholar 

  34. Jézéquel, M.: Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. arXiv:1708.01055

  35. Jézéquel, M.: Private communication (October 2017).

    Google Scholar 

  36. Kitaev, A.Yu.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. Nonlinearity 12, 141–179 (1999). Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”. Nonlinearity 12, 1717–1719 (1999)

    Article  MathSciNet  Google Scholar 

  37. Liverani, C.: Fredholm determinants, Anosov maps and Ruelle resonances. Discrete Contin. Dyn. Syst. 13, 1203–1215 (2005)

    Article  MathSciNet  Google Scholar 

  38. Liverani, C., Tsujii, M.: Zeta functions and dynamical systems. Nonlinearity 19, 2467–2473 (2006)

    Article  MathSciNet  Google Scholar 

  39. Mayer, D.: The Ruelle–Araki Transfer Operator in Classical Statistical Mechanics. Lecture Notes in Phys. 123, Springer-Verlag, Berlin-New York (1980)

    MATH  Google Scholar 

  40. Milnor J., Thurston W.: Iterated maps of the interval. In: Alexander J.C., ed., Dynamical Systems (Maryland 1986–1987), pp. 465–563, Lecture Notes in Math. 1342, Springer-Verlag, Berlin (1988)

    Google Scholar 

  41. Nakano, Y., Tsujii, M., Wittsten, J.: The partial captivity condition for U(1) extensions of expanding maps on the circle. Nonlinearity 29, 1917–1925 (2016)

    Article  MathSciNet  Google Scholar 

  42. Naud, F.: Entropy and decay of correlations for real analytic semi-flows. Ann. Henri Poincaré. 10, 429–451 (2009)

    Article  MathSciNet  Google Scholar 

  43. Pietsch, A.: Eigenvalues and \(s\)-numbers. Cambridge Studies in Advanced Mathematics, 13. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  44. Pollicott, M.: A complex Ruelle–Perron–Frobenius theorem and two counterexamples. Ergodic Theory Dynam. Systems 4, 135–146 (1984)

    Article  MathSciNet  Google Scholar 

  45. Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34, 231–242 (1976)

    Article  MathSciNet  Google Scholar 

  46. Ruelle, D.: An extension of the theory of Fredholm determinants. Inst. Hautes Études Sci. Publ. Math. 72, 175–193 (1990)

    Article  MathSciNet  Google Scholar 

  47. Ruelle, D.: Dynamical zeta functions: where do they come from and what are they good for? in: Mathematical physics, X (Leipzig, 1991) 43–51, Springer, Berlin (1992)

    Google Scholar 

  48. Ruelle, D.: Dynamical zeta functions for piecewise monotone maps of the interval. CRM Monograph Series, 4, Amer. Math. Soc., Providence, RI (1994)

    MATH  Google Scholar 

  49. Ruelle, D.: Dynamical zeta functions and transfer operators. Notices Amer. Math. Soc. 49, 887–895 (2002)

    MathSciNet  MATH  Google Scholar 

  50. Rugh, H.H.: The correlation spectrum for hyperbolic analytic maps. Nonlinearity 5, 1237–1263 (1992)

    Article  MathSciNet  Google Scholar 

  51. Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergodic Theory Dynam. Systems 16, 805–819 (1996)

    Article  MathSciNet  Google Scholar 

  52. Rugh, H.H.: Intermittency and regularized Fredholm determinants. Invent. Math. 135, 1–24 (1999)

    Article  MathSciNet  Google Scholar 

  53. Rugh, H.H.: The Milnor–Thurston determinant and the Ruelle transfer operator. Comm. Math. Phys. 342, 603–614 (2016)

    Article  MathSciNet  Google Scholar 

  54. Slipantschuk, J., Bandtlow, O.F., Just, W.: Analytic expanding circle maps with explicit spectra. Nonlinearity 26, 3231–3245 (2013)

    Article  MathSciNet  Google Scholar 

  55. Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30, 2667–2686 (2017)

    Article  MathSciNet  Google Scholar 

  56. Thomine, D.: A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems (A) 30, 917–944 (2011)

    Article  MathSciNet  Google Scholar 

  57. Tsujii, M.: Decay of correlations in suspension semi-flows of angle multiplying maps. Ergodic Theory Dynam. Systems. 28, 291–317 (2008)

    Article  MathSciNet  Google Scholar 

  58. Tsujii, M.: The error term of the prime orbit theorem for expanding semiflows. Ergodic Theory and Dynamical Systems (2017) https://doi.org/10.1017/etds.2016.113

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baladi, V. (2018). Smooth expanding maps: Dynamical determinants. In: Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 68. Springer, Cham. https://doi.org/10.1007/978-3-319-77661-3_3

Download citation

Publish with us

Policies and ethics