Introduction to Rings

  • Gregory T. Lee
Part of the Springer Undergraduate Mathematics Series book series (SUMS)


We now move on to the second major type of algebraic object that we are considering: the ring. At first blush, rings look a bit more complicated than groups. Indeed, a ring is an abelian group written additively, and we must still impose a multiplication operation along with several new rules. But in another sense, rings are easier to deal with, because they are more familiar. Indeed, when we think of a ring, we tend to think of the integers (although, as we shall see, the integers are actually a special sort of ring). In this chapter, we will define a ring and prove some properties of rings and subrings. We shall also discuss two well-behaved types of rings; namely, integral domains and fields.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesLakehead UniversityThunder BayCanada

Personalised recommendations