Image Thresholding Based on Fuzzy Particle Swarm Optimization

  • Anderson Carlos Sousa SantosEmail author
  • Helio Pedrini


Segmentation is a crucial stage in the image analysis process, whose main purpose is to partition an image into meaningful regions of interest. Thresholding is the simplest image segmentation method, where a global or local threshold value is selected for segmenting pixels into background and foreground regions. However, the determination of a proper threshold value is typically dependent on subjective assumptions or empirical rules. In this work, we propose and analyze an image thresholding technique based on a fuzzy particle swarm optimization. Several images are used in our experiments to show the effectiveness of the developed approach.


Image thresholding Particle swarm optimization Image segmentation Fuzzy threshold Fitness function 



The authors are thankful to São Paulo Research Foundation (grant FAPESP #2014/12236-1) and the Brazilian Council for Scientific and Technological Development (grant CNPq #305169/2015-7 and scholarship #141647/2017-5) for their financial support.


  1. 1.
    M.N. Ab Wahab, S. Nefti-Meziani, A. Atyabi, A comprehensive review of swarm optimization algorithms. PloS One 10(5), e0122827 (2015)Google Scholar
  2. 2.
    A. Abraham, H. Guo, H. Liu, Swarm intelligence: foundations, perspectives and applications, in Swarm Intelligent Systems (Springer, Berlin, 2006), pp. 3–25Google Scholar
  3. 3.
    M. Ali, C.W. Ahn, M. Pant, Multi-level image thresholding by synergetic differential evolution. Appl. Soft Comput. 17, 1–11 (2014)Google Scholar
  4. 4.
    A. Alihodzic, M. Tuba, Improved bat algorithm applied to multilevel image thresholding. Sci. World J. 2014, 16 pp. (2014)Google Scholar
  5. 5.
    D.T. Anderson, T.C. Havens, C. Wagner, J.M. Keller, M.F. Anderson, D.J. Wescott, Sugeno fuzzy integral generalizations for sub-normal fuzzy set-valued inputs, in IEEE International Conference on Fuzzy Systems (2012), pp. 1–8Google Scholar
  6. 6.
    M. Beauchemin, Image thresholding based on semivariance. Pattern Recogn. Lett. 34(5), 456–462 (2013)Google Scholar
  7. 7.
    J. Bernsen, Dynamic thresholding of grey-level images, in 6th International Conference on Pattern Recognition, Berlin (1986), pp. 1251–1255Google Scholar
  8. 8.
    B. Bhanu, S. Lee, Genetic Learning for Adaptive Image Segmentation, vol. 287 (Springer Science & Business Media, Berlin, 2012)Google Scholar
  9. 9.
    B. Bhanu, S. Lee, S. Das, Adaptive image segmentation using genetic and hybrid search methods. IEEE Trans. Aerosp. Electron. Syst. 31(4), 1268–1291 (1995)Google Scholar
  10. 10.
    I. Brajevic, M. Tuba, Cuckoo search and firefly algorithm applied to multilevel image thresholding, in Cuckoo Search and Firefly Algorithm (Springer, Berlin, 2014), pp. 115–139Google Scholar
  11. 11.
    D. Bratton, J. Kennedy, Defining a standard for particle swarm optimization, in IEEE Swarm Intelligence Symposium (IEEE, New York, 2007), pp. 120–127Google Scholar
  12. 12.
    K. Charansiriphaisan, S. Chiewchanwattana, K. Sunat, A global multilevel thresholding using differential evolution approach. Math. Probl. Eng. 2014, 23 pp. (2014)Google Scholar
  13. 13.
    M. Clerc, Particle Swarm Optimization (Wiley, New York, 2010)Google Scholar
  14. 14.
    J. D’Avy, W.-W. Hsu, C.-H. Chen, A. Koschan, M. Abidi, An efficient method for optimizing segmentation parameters, in Emerging Technologies in Intelligent Applications for Image and Video Processing (IGI Global, Hershey, 2016), pp. 29–47Google Scholar
  15. 15.
    A. Dirami, K. Hammouche, M. Diaf, P. Siarry, Fast multilevel thresholding for image segmentation through a multiphase level set method. Signal Process. 93(1), 139–153 (2013)Google Scholar
  16. 16.
    D.J. Dubois, Fuzzy Sets and Systems: Theory and Applications, vol. 144 (Academic, New York, 1980)Google Scholar
  17. 17.
    R.C. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence (Elsevier, Amsterdam, 2001)Google Scholar
  18. 18.
    X. Gao, T. Wang, J. Li, A content-based image quality metric, in Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (Springer, Berlin, 2005), pp. 231–240Google Scholar
  19. 19.
    C.A. Glasbey, An analysis of histogram-based thresholding algorithms. Graph. Models Image Process. 55(6), 532–537 (1993)Google Scholar
  20. 20.
    R. Gonzalez, R. Woods, Digital Image Processing Using Matlab (McGraw Hill Education, New York, 2010)Google Scholar
  21. 21.
    M. Grabisch, M. Sugeno, T. Murofushi, Fuzzy Measures and Integrals: Theory and Applications (Springer, New York, 2000)Google Scholar
  22. 22.
    J.N. Kapur, P.K. Sahoo, A.K. Wong, A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29(3), 273–285 (1985)Google Scholar
  23. 23.
    J. Kennedy, R. Eberhart, Particle swarm optimization, in IEEE International Conference on Neural Networks, Perth, 1995, pp. 1942–1948Google Scholar
  24. 24.
    G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, vol. 4 (Prentice Hall, Princeton, 1995)Google Scholar
  25. 25.
    T. Kurban, P. Civicioglu, R. Kurban, E. Besdok, Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding. Appl. Soft Comput. 23, 128–143 (2014)Google Scholar
  26. 26.
    Y. Li, L. Jiao, R. Shang, R. Stolkin, Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Inform. Sci. 294, 408–422 (2015)Google Scholar
  27. 27.
    Y.-C. Liang, A.H.-L. Chen, C.-C. Chyu, Application of a hybrid ant colony optimization for the multilevel thresholding in image processing, in International Conference on Neural Information Processing (Springer, Berlin, 2006), pp. 1183–1192Google Scholar
  28. 28.
    Y. Liu, C. Mu, W. Kou, Optimal multilevel thresholding using the modified adaptive particle swarm optimization. Int. J. Digital Content Technol. Appl. 6(15), 208–219 (2012)Google Scholar
  29. 29.
    Y. Liu, C. Mu, W. Kou, J. Liu, Modified particle swarm optimization-based multilevel thresholding for image segmentation. Soft Comput. 19(5), 1311–1327 (2015)Google Scholar
  30. 30.
    A.R. Malisia, H.R. Tizhoosh, Image thresholding using ant colony optimization, in 3rd Canadian Conference on Computer and Robot Vision (2006)Google Scholar
  31. 31.
    S. Manikandan, K. Ramar, M.W. Iruthayarajan, K. Srinivasagan, Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47, 558–568 (2014)Google Scholar
  32. 32.
    T. Murofushi, M. Sugeno, Fuzzy measures and fuzzy integrals, in Fuzzy Measures and Integrals – Theory and Applications, ed. by M. Grabisch, T. Murofushi, M. Sugeno (Physica, Heidelberg, 2000), pp. 3–41Google Scholar
  33. 33.
    W. Niblack, An Introduction to Digital Image Processing (Prentice Hall, Princeton, 1986)Google Scholar
  34. 34.
    D. Oliva, E. Cuevas, G. Pajares, D. Zaldivar, M. Perez-Cisneros, Multilevel thresholding segmentation based on harmony search optimization. J. Appl. Math. 2013 (2013)Google Scholar
  35. 35.
    N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  36. 36.
    R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  37. 37.
    A. Rosenfeld, Multiresolution Image Processing and Analysis, vol. 12 (Springer Science & Business Media, Berlin, 2013)zbMATHGoogle Scholar
  38. 38.
    S. Sarkar, S. Das, Multilevel image thresholding based on 2D histogram and maximum tsallis entropy: a differential evolution approach. IEEE Trans. Image Process. 22(12), 4788–4797 (2013)MathSciNetCrossRefGoogle Scholar
  39. 39.
    S. Sarkar, S. Das, S.S. Chaudhuri, A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recogn. Lett. 54, 27–35 (2015)CrossRefGoogle Scholar
  40. 40.
    J. Sauvola, M. Pietaksinen, Adaptive document image binarization. Pattern Recogn. 33, 225–236 (2000)CrossRefGoogle Scholar
  41. 41.
    M. Sezgin, Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)MathSciNetCrossRefGoogle Scholar
  42. 42.
    S. Shen, W. Sandham, M. Granat, A. Sterr, MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. Inform. Technol. Biomed. 9(3), 459–467 (2005)CrossRefGoogle Scholar
  43. 43.
    Y. Shi, R. Eberhart, A modified particle swarm optimizer, in IEEE International Conference on Evolutionary Computation (IEEE, New York, 1998), pp. 69–73Google Scholar
  44. 44.
    A. Singla, S. Patra, A context sensitive thresholding technique for automatic image segmentation, in Computational Intelligence in Data Mining, ed. by L.C. Jain, H.S. Behera, J.K. Mandal, D.P. Mohapatra. Smart Innovation, Systems and Technologies, vol. 32, (Springer India, New Delhi, 2015), pp. 19–25Google Scholar
  45. 45.
    M. Sugeno, Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology, 1974Google Scholar
  46. 46.
    I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection. Inform. Process. Lett. 85(6), 317–325 (2003)MathSciNetCrossRefGoogle Scholar
  47. 47.
    B.D. Trier, A.K. Jain, Goal-directed evaluation of binarization methods. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1191–1201 (1995)CrossRefGoogle Scholar
  48. 48.
    Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  49. 49.
    J.S. Weszka, R.N. Nagel, A. Rosenfeld, A threshold selection technique. IEEE Trans. Comput. C-23, 1322–1326 (1974)CrossRefGoogle Scholar
  50. 50.
    Q.-Z. Ye, P.-E. Danielsson, On minimum error thresholding and its implementations. Pattern Recogn. Lett. 7(4), 201–206 (1988)CrossRefGoogle Scholar
  51. 51.
    Z. Ye, Z. Hu, X. Lai, H. Chen, Image segmentation using thresholding and swarm intelligence. J. Softw. 7(5), 1074–1082 (2012)CrossRefGoogle Scholar
  52. 52.
    P.-Y. Yin, Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl. Math. Comput. 184(2), 503–513 (2007)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Y. Zou, H. Liu, E. Song, Z. Huang, Image bilevel thresholding based on multiscale gradient multiplication. Comput. Electr. Eng. 38(4), 853–861 (2012)CrossRefGoogle Scholar
  54. 54.
    Y. Zou, H. Liu, Q. Zhang, Image bilevel thresholding based on stable transition region set. Digital Signal Process. 23(1), 126–141 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations